- el e R s - ———. s e SR POl i s

_L‘L' .

TURBO
TOOLKEIT
THE ULTIMATE QL TOOLKIT

by
Simon Goodwin

A0
L0iGIGL FReiSIonN

[0O

Fopitatend Sy Dig el Bogsgean, 330 The dvanga, London T8 GHE
Ao ram ang Soduthertdngst £ rESY Dehisd Sroasian

QL TURBO TOOLKIT
USER MANUAL

for

Version 3.38

Manual Copyright 1986 Simon N Goodwin
Turbo Toolkit updated 2000 by Mark Knight & David Gilham
updated 2003 by David Gilham
updated 2005 by David Gilham
updated 2006 by George Gwilt
Manual updated 2000 by Tim Swenson
2002 by George Gwilt
2003 by George Gwilt
2005 by George Gwilt
2006 by George Gwilt

CHAPTER SUMMARY

1. Overview & Credits
2. Channel Manipulation Commands
CHANNEL_ID, SET_CHANNEL, CONNECT, FWINDOW%
3. Random Access File Handling
POSITION, SET_POSITION, GetHEAD, SetHEAD
4. Task Control
LIST_TASKS, SET_PRIORITY, SUSPEND_TASK, RELEASE_TASK, REMOVE_TASK
5. Cursor Control
CURSOR_ON, CURSOR_OFF
6. Error detection and trapping
DEVICE_STATUS, DEVICE_SPACE, WHEN_ERROR, END_WHEN, ERNUM%, ERLIN%, RETRY_HERE, DEBUG, DEBUG_LEVEL
7. Task and Compiler Invocation

CHARGE, EXECUTE, EXECUTE_A, EXECUTE_W, LINK_LOAD, LINK_LOAD_A, LINK_LOAD_W, SNOOZE, COMPILED,
OPTION_CMD$, DEFAULT_DEVICE, CATNAP

8. Editing Data on the Screen

EDIT$, EDIT%, EDITF
9. Binary Input and Output

FLOATS, INTEGERS, STRINGS, GET%, GETF, GETS$, INPUT$, LONGINTEGER, LONGINTEGERS, STRING%, STRINGF
10. Memory Management

ALLOCATION, DEALLOCATE, MOVE_MEMORY, PEEK$, POKE$, SEARCH_MEMORY, POKE_F, PEEK_F, SYS_VARS
11. Access to SuperBASIC Data Structures

BASIC_B%, BASIC_W%, BASIC_L, BASIC_POINTER, BASIC_NAMES$, BASIC_INDEX%, BASIC_TYPE%, BASIC_F
12. Automatic Typing and Command Entry

TYPE_IN, COMMAND_LINE, END_CMD
13. Selecting Fonts

SET_FONT
14. Data Indirection Directives

REFERENCE, GLOBAL, EXTERNAL, PROCEDURE, FUNCTION, TURBO_P, TURBO_F

15. Data Type

IMPLICITS, IMPLICIT%
16. Finding Memory Requirements

FREE_MEMORY, PC_FREEMEM, DATASPACE
17. Turbo Compiler Directives

TURBO_obffil, TURBO_taskn, TURBO_repfil, TURBO_diags, TURBO_sound, TURBO_struct, TURBO_model, TURBO list, TURBO_locstr,
TURBO_optim, TURBO_windo, TURBO_objdat, TURBO_buffersz, TURBO_objstk, TURBO _ref, TURBO_V, TURBO_DUMMY%,
TURBO_DUMMYF, TURBO_DUMMYS$, TURBO_DUMMYP, MANIFEST, DATA_AREA

18. Final Comments

1. Overview & Credits

QL TURBO TOOLKIT is a library of over 100 SuperBASIC commands, functions and directives.

This manual documents the new SuperBASIC instructions. Most of these may be used in interpreted or compiled SuperBASIC programs, but some
are specifically designed to be used in compiled programs. Many are compatible with Supercharge, the first SuperBASIC compiler from Digital
Precision. A few make use of the more advanced facilities of subsequent compilers. Similarly, some of the commands were present in the first set
of compiler extensions published with Supercharge by Digital Precision; in general these commands have kept the same names, but their
performance and flexibility have been improved.

There are three versions of the Turbo Toolkit supplied, more or less functionally identical. One (filename TURBO_TK_CODE), works on all known
QL and compatible systems; the other (filename TURBO_SMS_CODE) works on SMSQ/E systems only (note: NOT SMSQ or SMS2 systems).
The SMSQ/E only version takes up less memory and uses some of the extended trap calls in SMSQ/E to work slightly faster and save space in
some areas of its code. The third version (filename TURBO_REM_CODE) contains only those commands which can be called inside a compiled
program. This version can be "included" inside a task compiled by Turbo to obviate the need to LRESPR TK Code to run the task.

Turbo Toolkit can be loaded with the following line:

base = RESPR(8256): LBYTES FLP1 TURBO TK CODE,base: CALL base
or

LREPSR FLP1 TURBO TK CODE / LRESPR FLP1 TURBO SMS CODE

This command causes the extensions to be installed into reserved memory from the file TURBO_TK_CODE (or TURBO_SMS_CODE), and linked
into the SuperBASIC system. You can then use the commands as if they were a normal part of the SuperBASIC language. They will remain
available until you reset or turn off the computer.

Remember that, as with all other add-on procedures or functions, you must install the commands before you load any program which uses them.
This rule applies whether the program using the commands is compiled or written in boring old ordinary SuperBASIC.

Default options

TURBO TOOLKIT is stored in RAM, rather than ROM and the fact that it is held in memory means that you can 'tailor' many of the default values it
uses to suit your system.

The 'default’ values are used by Toolkit commands if no explicit information is provided when the command is entered. In particular, you can set:

1. The default device name (normally FLP1_); this is added at the start of names supplied to CHARGE, LINK_LOAD or EXECUTE, unless
they already begin with a device name. Compiler overlays are also read from this device.

2. The default buffer size used by EDIT (normally 40 characters).

3. Whether or not EDIT produces a sound after every error.

4. The length of pipes used to link tasks by EXECUTE (normally 200 bytes).

5. The key or keys used to abort CHARGE and EXECUTE_A (normally ALT SPACE).

The bulk of this manual consists of a discussion of the new commands, directives and functions in small groups, collected by category, with a list of
names at the start of each section.

TURBO TOOLKIT has been written by a programmer, for programmers. The new facilities are concise, powerful and general. The examples will
indicate some of the things you can do with TURBO TOOLKIT, but there are thousands of other possibilities. Experiment!

Credits

My thanks go to Chas Dillon for advice and encouragement in the development of this toolkit, and to Tony Tebby and Andy Pennell for help and
information.

- Simon N Goodwin
Turbo Toolkit is Freeware

Simon Goodwin has allowed Turbo Toolkit (TTK) to be released as freeware. Mark Knight & David Gilham have updated TTK so that it will work
with the Pointer Environment and SMSQ/E. TTK may be freely redistributed and used as part of any application, freeware or commercial.

2. Channel Manipulation Commands

CHANNEL_ID, SET_CHANNEL, CONNECT, FWINDOW%

The QL contains facilities to handle 'pipes' - queues of characters maintained in memory by the system, where the user can either put characters
into the pipe or take them out, and the first character put in is always the first to come out. The channel which puts characters into the pipe is termed
the output pipe and the channel that reads characters is the input pipe.

These pipes can have any length from 1 to 32767 characters, and are often very useful when a program needs a temporary buffer. Unfortunately
they have not been available to the BASIC programmer, because the standard SuperBASIC OPEN command is not sufficiently sophisticated to
allow the user to specify which channel a given input pipe is to take characters from. A new command, CONNECT, solves this problem.

Another problem with channels comes when two or more tasks are linked and running concurrently. It is often useful for one task to use a channel
opened by another - yet every compiled SuperBASIC program has an independent channel table, so channel numbers do not correspond from one
task to the next.

CONNECT

CONNECT works rather like OPEN except it expects TWO channel numbers -the output and input pipes, respectively.

The first channel must previously have been opened to an output pipe, e.g:

OPEN #4,PIPE 500
Any integer from 1 to 32767 can follow the underscore character - the number determines the length of the pipe.

You may now PRINT characters to channel 4; they will be stored in the pipe until it is full; once it is full no further characters will be accepted until
some characters are taken out from 'the other end' of the pipe. To allow this, and to specify the channel from which characters will emerge from the

pipe, Type:
CONNECT 4 TO 3

You can put hash signs in front of the channel numbers if it makes you feel happy - they're not necessary. The above command would allow
characters PRINTed from channel 4 to be read, in their original sequence, from channel 3. If channel 3 is already open, CONNECT closes it before
linking it to the pipe.

To test CONNECT, type these commands:

PRINT #4;"HELLO PIPE.": INPUT #3;AS$: PRINT AS

The first command sends a message into the pipe. The second reads it into the variable A$, and the third prints the result. Unless something is very
wrong with your QL, the message should be the same before and after 'piping'!

If a pipe is full, a task that tries to write characters into it will pause until there's room. If a pipe is empty a task that tries to read characters will just
wait until there is something to be read. The EOF function works with pipes, but you must CLOSE the output pipe before the input channel can
detect the end of the file - otherwise there would be no distinction between the end of a file and a temporary break in the stream of data.

There is one irritating but non-crucial implementation restriction upon CONNECT. The input channel number must not be the highest channel
number yet used in BASIC, or you will get a CHANNEL NOT OPEN error. You can get around this in two ways. Either make sure that you 'leave a
gap' for that channel when you open the output pipe, or use a channel that has previously been opened for another purpose.

CHANNEL_ID

This function allows a task to find the operating system's internal identifier for a channel. This 32 bit identifier is returned as a floating-point value,
but may be stored in a long word - with POKE_L, for instance. The channel identifier can be passed to another task to allow pipes to be set up or
routines in the second task to PRINT to or INPUT from that physical channel.

The function expects one numeric parameter - the SuperBASIC channel number of the channel which must be identified. That should be the number
of an OPEN channel, for obvious reasons.

SET_CHANNEL

The procedure SET_CHANNEL has the opposite purpose - to associate a channel ID with a BASIC channel number. In case you're getting
confused, here's a rather trivial example that allows channel 3 to be used for input and output just as if it were channel 0, the command channel.

X=CHANNEL_ID(#0) SET CHANNEL #3,X

Subsequent PRINT #3s and INPUT #3s will work just like PRINT #0s and INPUT #0s. An attempt to CLOSE channel 3 would close channel 0 'as
well', since they both correspond to the same hardware channel as far as the operating system is concerned. In fact you should NEVER close the
SuperBASIC interpreter's channels 0 and 1, because parts of the operating system assume that they will always be open and (therefore) have fixed
identifiers. Unfortunately the ROM does not check to stop you doing this, and it is easy to accidentally 'hang' the machine as a result. Remember
that OPEN and CONNECT may both perform an implicit CLOSE.

In general you get a weird message or your machine crashes if you use a channel once another with the same identifier has been closed. This kind

of thing makes the QL very upset.

For obvious reasons, SET_CHANNEL works with system channel identifiers, rather than SuperBASIC ones. The interpreter associates some
information about channels with specific channel numbers; this information is not copied by SET_CHANNEL. When using one channel with an
identifier copied from another, you must not make any assumptions about:

1. The current graphics coordinates.
2. The turtle angle or pen position.
3. The cursor position and line width, for non-console channels.
This information will be stored separately and independently for each SuperBASIC channel number.

As with CONNECT, there is a small implementation restriction on SET_CHANNEL. The channel number you SET must not be the highest channel
number yet used in BASIC, or you will get a CHANNEL NOT OPEN error. You can get around this in two ways. Either make sure that you 'leave a
gap' for that channel when you open some other channel, or use a channel that has previously been opened for another purpose. If the channel is
already open, SET_CHANNEL closes it before associating it with the new identifier.

FWINDOW%

Function to help write programs which will work on a standard QL screen but which can also use high resolution screens. This function takes the
same parameters as WINDOW though the channel parameter is not optional. Returns an error code if the window can't be redefined, otherwise
redefines it just as WINDOW does and returns 0. Enclosed is a suitable SuperBASIC program (ReSize_BAS), a smaller example follows:

1000 WindowError=FWINDOWS (#0,512,384,0,0)
1010 IF WindowError<0 THEN

1020 WINDOW#0,512,256,0,0

1030 END IF

3. Random Access File Handling

POSITION, SET_POSITION, GetHEAD, SetHEAD

Two commands allow you to read or write any part of a file without having to read past the rest of the file. Whole files can be accessed 'at random' -
treated like enormous character arrays. Two other commands allow access to the file header.

POSITION

This function returns the current position within a specified channel, e.g. PRINT POSITION(#3). The channel number must be prefixed with a hash
character, and the associated channel must be open to a file or pipe, or a bad parameter error will occur. The first 'position’ in a file (as opposed to
a Kama Sutra) is position 0.

SET_POSITION

This command requires two parameters: a channel number (preceded by a hash) and a position. It attempts to set the position within the channel to
the value specified.

If the required position is beyond the end of the file - e.g. SET_POSITION #3,1E9 - the position is set to the end of the file. If the parameter value is
0 or less, the position is set to the start of the file.

GetHEAD & SetHEAD

The command GetHEAD lets you read a file header. For instance, it lets you check the file length and the dates when the file was last read,
changed or copied. SetHEAD lets you change the dataspace of a task, or the file-type or other 'reserved' information.

The commands have two parameters - a channel number, and the address of a 'buffer' - an area of memory where the file header can be stored.

Before you can use the commands you must open the relevant file in the normal way. If you've got a toolkit you can check that the file exists first,
using a function like DEVICE_STATUS or FOPEN.

You can reserve the buffer - an area of 64 otherwise-unused bytes of memory - with ALLOCATION.

As is often the case on the QL, it's easier to read information than it is to change it. For some reason best known to QDOS designer Tony Tebby
the QL FS.HEADS routine only re-writes the first 15 bytes of a header, and the length of a file is always reset when the file is closed, so you can't
rename a file or set the dates this way.

SetHEAD does let you alter the dataspace of a task easily. The old way to do this was to load the whole file with LBYTES, DELETE it and re-save
it with SEXEC. SetHEAD does the job much faster and more economically.

You can also use SetHEAD to hide information in the 'access’, 'type' and 'extra’ slots. Just read the header with GetHEAD, POKE the buffer with
new values, and store them with SetHEAD. Don't forget to CLOSE the file when you've finished!

4. Task Control

LIST_TASKS, SET_PRIORITY, REMOVE_TASK, RELEASE_TASK, SUSPEND_TASK

LIST_TASKS

The LIST_TASKS command, as you might expect, produces a list of all the tasks currently running on the QL. The list consists of four columns,
separated by commas:

Name, Number, Tag, Priority

You can direct the list of tasks to any QL device by following the command with a channel number, just as with PRINT or DIR. The hash character is
optional. Thus, to send the list to the command window (channel 0), you type:

LIST TASKS #0

If you type LIST_TASKS before any tasks have been explicitly loaded, you obtain this response:

BASIC, 0, 0, 32

That line indicates that the only task running is the QL's BASIC language, which interprets SuperBASIC programs and allows you to type
commands. If there were more tasks running there would be a line for each one. Tasks are listed in the order in which they were loaded.

The first piece of information is the name of the task - BASIC, in this case. Other tasks have the name assigned by their programmer, or 'No name'
if the programmer ticked the 'no publicity' box and left the code nameless.

After the name come two numbers which identify the task to the QL system. These are called the 'task number' and the 'task tag', or, together, the
'task identifier'. These numbers are needed when you use other task-control commands. It is unfortunate that two numbers are used, rather than
one, but - like lots of other unfortunate things -this feature is 'designed into' the QL's operating system. The SuperBASIC interpreter is always task
0,0.

The last number is the 'priority’ of the task. When there is only one task running this figure is not important; otherwise, it determines the proportion of
time which the QL spends executing a given task.

The last character is a full stop, if the task is ready to run normally, or a letter "s" if the task has been suspended. Tasks may be suspended by
QDOS while they are waiting for data, or by the user for any reason.

Priority treatment

Priority numbers range from 0 to 255. If a task has a priority of O it never gets any time at all. If a task has any other priority, the proportion of the
processing time it receives will depend upon the priority of other tasks.

If three tasks were running, all with a priority of 32 (the standard value given by EXEC or EXECUTE), they would all receive roughly the same
amount of attention and run at roughly the same speed. If the priority of one of the tasks was reduced to 1, that task would receive much less
processing time than the others, and appear to run more slowly. In fact, it would be chosen for execution less frequently.

Tasks have an 'intermediate’ priority of 32 by default, since this makes it easy to make certain tasks faster or slower than the norm. ltis a good idea
to avoid using high priorities except in rare circumstances, since it can be irritating to have to 'turn down' a number of tasks just to make one
relatively faster.

The exact ratio of execution times depends upon what each task is doing. In general, high priority tasks receive the largest proportion of processing
time, but this is not always the case. If two tasks are both waiting for information (from the keyboard or serial port, perhaps), the QL does not waste
time on them - whatever their priority - until they have some data to process; in this case, a third task with a priority of 1 might receive most of the
time, simply because it might be the only task which was immediately ready to run.

The QL does not 'forget' about tasks unless they have a priority of zero. Even if a task has a priority of 1 it is executed occasionally -but it may not
run for long each time it is awakened, and such awakenings may be infrequent.

Sometimes you can see this process at work. It is common to set the priority of 'clock’ or 'calendar' tasks, which display the current date, to a low
value, so that they only use a small proportion of the QL's time. If you have such a program you may notice that it shows the exact time, accurate to
the second, when the compuiter is idle, but while you type in commands, or list programs, the display may only be updated every few seconds.

The "priority' of QL tasks is much like the 'priorities' which you might attach to tasks at home. Fixing the gas fire might be a high priority, hoovering
the carpet a lower priority and experimenting with your QL the lowest priority of all, only to be done when other tasks are not pressing. Unfortunately
the author only attends to the fire when he would otherwise be suffocated or poisoned by fumes. This is not, in itself, a good policy, but it's brought
you TURBO as well as TURBO TOOLKIT, so itis evidently a viable scheme of priorities!

SET_PRIORITY

This command allows you to change the priority of any task that is loaded.

The QL needs two things in order to change the priority of a task - the task identifier (the number and the tag) and the new priority. Priority values
may range from 0 to 255 on QDOS and -128 to 127 on Minerva and SMSQ/E.

Use the LIST_TASKS command to find the names of tasks and the corresponding 'task identifier' numbers. You must use identifier numbers to
specify a task, rather than names, since it is quite possible to run several tasks which have the same name.

The format of the SET_PRIORITY command is shown below:

SET PRIORITY 0, 0, 16

This command sets the priority of task number 0,0 (built-in BASIC) to 16 - half the value set when you turn your computer on. Such a command
might be used to give more time to other tasks once they had been loaded by BASIC. You are allowed to set the priority of task 0,0 to zero, but this
will make the entry of further commands impossible! If the task you specify does not exist, the error report is 'lInvalid job' - 'job' is just another term
for 'task'.

There are times when it is useful for a task to be able to set its own priority. Any program can do this by using the SET_PRIORITY command with
just one parameter - the new priority. Thus:

SET PRIORITY 1

sets the priority of the task that executes the command to 1.

REMOVE_TASK

You can remove a task from memory with the REMOVE_TASK command. You must identify the task with the two numbers from the list, as with
SET PRIORITY:

REMOVE TASK 1,1

If the task identifier you specify does not correspond to a job which is currently loaded, 'Invalid Job' is reported. 'Job' means the same thing as
'task’. 'Not complete' is reported if you try to remove task 0,0. This is not allowed as it would make it impossible to enter further commands.

When a task is removed, all the channels it was using are immediately closed, devices are made free for the use of other tasks, and the memory in
which the task was running is released. This happens automatically when STOP or NEW is encountered in a compiled program.

SUSPEND TASK

Sometimes it is useful to be able to 'put a task to sleep' for a while. The command SUSPEND_TASK does just that. Normally it has three
parameters: a pair of integers, together making a task identifier (as with SET_PRIORITY or REMOVE_TASK), and a third integer number
indicating the amount of time for which the task is to remain dormant.

This value is in units of one display 'frame' time - the time taken for the video electronics to generate a complete (but not interlaced) picture. The
same units are used to specify delays generated by the PAUSE statement. This time generally corresponds to the rate of alternation of the mains
electricity supply. In the UK and most of Europe this time is a fiftieth of a second; in the USA and some other countries it is 1/60 second.

As with SET_PRIORITY, you may use the SUSPEND_TASK command with a single number, in which case the period of suspension is assumed
to refer to the task executing the command. You can check the frame time of your QL by entering and timing this direct command:

SUSPEND_TASK 600
If the computer pauses for 12 seconds your display is re-drawn 50 times a second. A ten second pause indicates a frame time of 1/60 second.

It is not wise to try this experiment while other tasks are running, because the command merely sets a minimum time for which the task will remain
dormant. At the end of that time the computer will treat that task as if itis competing for time just like any other task. Tasks don't necessarily start to
run as soon as their period of suspension is over - it depends what else is going on.

You can put a task to sleep 'for ever' by specifying -1 as the length of pause. The task will not start to run until another task explicitly 'releases' it from
suspension. The command to do this will be discussed in a moment.

There is one special rule about task 0,0, the SuperBASIC interpreter. The BREAK keys - CONTROL and SPACE - will always bring that task back
to life if it is suspended, regardless of how long it was meant to wait. This is the mechanism that lets you break into SuperBASIC programs. The
TURBO TOOLKIT includes a command, EXECUTE_A, which lets you break into any other task in a similar way.

RELEASE_TASK

This command is the complement of SUSPEND_TASK. It expects two parameters - a task identifier - and releases the specified task. You'll get an
'Invalid Job' error if the numbers you type do not correspond to a valid task.

5. Cursor Control

CURSOR_ON, CURSOR_OFF

Two commands are provided to turn on and off the display of a cursor in a CONsole window. Thus a window can be selected even if INPUT is not
taking place. This is most useful when INKEY$ must be used from within a multi-tasking program.

CURSOR_ON

This command turns on the cursor in the specified channel. The channel number must be prefixed with a hash character, if present: the default is
channel 1. N.B: unlike commands in other toolkits, CURSOR_ON always causes the chosen cursor to flash; it doesn't just turn on a static cursor.

CURSOR_OFF

This command turns off the cursor in the specified channel.

6. Error Detection and Trapping

DEVICE_SPACE, DEVICE_SPACE, WHEN_ERROR, END_WHEN, RETRY_HERE, ERLIN%, ERNUM%, DEBUG, DEBUG_LEVEL

Effective error trapping is a vital feature of any interactive program, yet it is a feature that has been neglected in the implementation of
SuperBASIC. Late models of the QL have a set of undocumented commands which deal with error trapping, but these are extremely unreliable and
unavailable on most QLs. Nor have they been formally specified or documented; Sinclair Research apparently persuaded Jan Jones, the author of
the interpreter, to take their details out of her excellent'QL SUPERBASIC DEFINITIVE HANDBOOK' (ISBN 0-07-084784-3).

We chose to attack this problem by providing a function, DEVICE_STATUS. This checks for possible errors in the most common problem-area -
when you need to open a channel to a new device, perhaps using a name supplied by the user. It is difficult to get around the need for such a facility
when writing serious programs in SuperBASIC - indeed, we wrote DEVICE_STATUS when it became obvious that we would need it in order to
write SUPERCHARGE properiy!

A second function, DEVICE_SPACE, lets programs check whether or not there is room for data as they write.

DEVICE_SPACE

This function expects one parameter - the number of a channel open to any file on the medium (floppy disk, microdrive, or whatever). The channel
number may be preceeded by a hash character. Typically the parameter will be the channel number of an output file. The result of the function is the
number of unused bytes on the medium.

DEVICE_SPACE can be used as information is written to a medium, or as a check for possible errors before a file is created. NOTE: 64 bytes are
used to store the 'header’ of each new file. Some space for 'directory’ information may also be allocated when a new file is created.

DEVICE_STATUS

This function expects one or two parameters - an integer access-type (the default is 2) and a mandatory file or device name. It returns a negative
value if there is some problem opening a correspoOnding channel. Otherwise it returns zero or a positive value - usually the number of 'free' bytes
on the device. Serial devices, which have no real 'capacity', pretend that they are the same size as the largest possible QDOS devic - almost 33.6
Megabytes!

The exact treatment of your file or device name depends upon the access-type parameter, which should indicate what you want to do with the
device orfile.

DEVICE STATUS (0 , name$)

The 0 shows that you want to open, read and alter data in the file or device. The result will a negative number if this is not allowed; otherwise it will
be the number of unallocated bytes on the device.

DEVICE STATUS (1 , name$)

Access-type 1 indicates that you just want to read data from the file or device. The result will be a negative number if this is not allowed; otherwise it
will be the rather irrelevant number of free bytes of space on the device.

DEVICE STATUS(2 , name$) or DEVICE STATUS (name$)

Access-type 2 shows that you want to create a new file or open a new device. The result will be a negative number if this is not allowed; otherwise it
will be a positive value - the number of unallocated bytes on the device.

DEVICE STATUS (-1 , name$)

This is the most versatile of all. The function analyses the supplied string to find out whether or not it starts with the name of a device on the current
QL. Any parameters, such as 'con_448x180a32x16', serlEHC' or a file name are checked. If everything looks good DEVICE_STATUS tries to
open the file and re-write part of it, without corruptiing the contents. If the file does not exist, DEVICE_STATUS tries to create it. If this succeeds, the
function deletes the resultant file and returns with the number of free bytes on the medium, after allowing header and directory space for the 'empty'
file. A negative number is returned if anything goes wrong.

DEVICE_STATUS automatically adapts to different hardware, so you can use it on a basic QL system secure in the knowledge that it will also work
with floppy disks, modems, hard drives, 'parallel'printers and so on. For example, this command shows that the file TURBO_TASK' exists on the
write-protected disk in drive 1:

PRINT DEVICE STATUS (-1,"flpl turbo task")

produces the resullt:

-20

It is worth bearing in mind that DEVICE_STATUS takes a long time to get results from the network driver if there's nothing connected. This is
inevitable; if it bothers you, trap it before the call with;

IF NAMES (1 to 3)=="NET":RETurn -7:ELSE RETurn DEVICE STATUS (1,NAMES)

The meanings of the various returns from DEVICE_STATUS are shown below:

TABLE OF VALUES RETURNED BY DEVICE_STATUS
Value Meaning

0 or more The device exists, and is not busy; a file with the name specified (if any) does not yet exist. The name or other parameters (if any) are
valid. The value is the number of free bytes on the device, or a very large number for 'endless' serial devices.

-3 or -6 The device name and parameters are valid, but the QL has insufficient free space to open a new channel to the device.

-7 There's no device with that name on this QL.

-8 A file with the name specified exists on the device, and may be read, written or deleted.

-9 EITHER the device exists, but it is already in use and no other task may use it until the present one has finished; OR the file is being written.
-11 The specified device is full.

-12 The device name is valid, but the file name or parameters are not.

-16 Bad or changed medium; the medium in the device is faulty, or has been changed while the system was updating or writing to a file.

-20 The specified file exists and may be read but not altered, because the device is write-protected or the file is being read.

WHEN_ERROR, END_WHEN, RETRY_HERE, ERLIN% and ERNUM%

These commands and functions allow asynchronous error-trapping routines to be declared in appropriately compiled programs. See section 4 of
the QL Turbo Manual for a complete discussion.

DEBUG and DEBUG_LEVEL

Compiler directives used to delimit parts of a program so that code can be included or excluded conditionally. The use of these commands is
detailed in TurboS4.Txt.

7. Task and Compiler Invocation

DEFAULT_DEVICE, CHARGE, EXECUTE, EXECUTE_A, EXECUTE_W, OPTION_CMDS$, LINK_LOAD SNOOZE, COMPILED, CATNAP

DEFAULT_DEVICE

All file names used with CHARGE, LINK_LOAD or the various kinds of EXECUTE can use the 'default device'. If you don't specify a device at the
start of a name, the commands will automatically put the 'default device' name there. If Toolkit Il, which automatically sets the default device, is not
operational when TURBO TOOLKIT is loaded, the default device is set from a string within the TURBO TOOLKIT. This is initially 'FLP1_", but it can
be changed by using the Default Editor in UTILITY_TASK, to another five-character string.

You can at any time change the default by typing a new string as a parameter of DEFAULT_DEVICE:

DEFAULT DEVICE "winl sys"

NOTE. DEFAULT_DEVICE is equivalent to Toolkit I's PROG_USE.

CHARGE

A command to invoke Digital Precision SuperBASIC compilers. CHARGE must be entered from SuperBASIC, or the Master Basic with SMSQ. If
a string parameter is supplied it is treated as the name of the task file to be produced, although SUPERCHARGE ignores this. CHARGE puts the
default device name at the start o