QPTR Manual 3.2
QPTR

The Pointer Environment

Edition 5

Tony Tebby
QJump Limited

Jochen Merz
Jochen created the first (?) commercially available QPTR manual,
 and has provided updates as and when required. His website can be found at
 www.j-m-s.com.
Marcel Kilgus
Marcel created QPC, and has updated the Pointer Environment many
 times since the "demise" of Tony Tebby. See www.kilgus.net for details.
Norman Dunbar
This version, was created by Norman Dunbar using DocBook XML
 using Jochen Merz's 5th Edition as a baseline. His plans are to
 incorporate all the changes Marcel has made into this document. Norman's
 web site can be found at http://qdosmsq.dunbar-it.co.uk.

Copyright © 1988 Qjump Limited.

Abstract
The Pointer Environment documentation for application
 developers.

Preface

This document was originally created in Text87 format by Jochen Merz. It was published as a commercial product by
 Jochen Merz Software (JMS) under licence from the original
 owners of the copyright, QJump Limited.
Marcel Kilgus then created a PDF version using
 QPCPrint and put it on his web site for one and
 all to download. This was done with Jochen's full agreement.
This edition, the first DocBook version, was created using
 Jochen's text, extracted from Marcel's PDF using a Linux utility named pdf2txt,
 manually converted to DocBook XML, split into three parts, various chapters and
 sections, and then converted to use the Publican toolchain. After all this
 work, the QPTR Manual is now available in many formats thanks to some hard
 work by Norman Dunbar.
Note

Norman may of course have made a rod for his own back here.
 In order to preserver the new formatting etc, everything needs to remain
 in DocBook format. As (so far)
 Norman is the only QDOS afficianado known to dabble with
 DocBook, he's going to have to be
 the one to update things when changes are made. Oops!
Having said that, he will be investigating the possibility of
 placing the source code for the book on SourceForge so that anyone can download it and fiddle with
 it to create new versions. That might take some of the stress off of
 things. Maybe!

Formats available at the time of writing are:
	DocBook XML - the source code for this book.

	PDF

	Wordprocessing ML (WML) - for Microsoft Word 2003 onwards.

	Open Document - for Open Office version 2 onwards.

	Rich Text Format - for almost any other word processor.

	Epub - for most good eReader devices.

Other formats may also be available as time goes by and the Publican toolchain improves.
Other authors and developers have contributed to this book and many
 may remain nameless, however, Marcel Kilgus requires a mention for the huge amount of work
 he has contributed, both to this manual and to QDOS/SMSQ in general. His
 QPC emulator for the PC (it runs
 under Windows and equally well under WINE if you
 use Linux). George Gwilt patiently explained things to me where I had a
 complete misunderstanding of them from reading the original manual.
 Jochen, of course, for the original version and Tony Tebby for the code and initial documentation.
My own contributions are limited by comparison. I took other people's
 work, and reformatted it to XML. I also added a couple of updates where I
 explained things left out of the original manual. Once I had a sort of
 working manual, I then reformatted various bits into proper tables and such
 like to make the final version look better.
The longest part of the conversion was taking Jochen's logo from his Web Site, where it is a gif file, and
 converting it to an Inkscape SVG file. These scale far
 better than almost anything else as they are vector images as opposed to
 bitmaps.
And finally, a word about the version numbering of this version of the
 manual. I asked around on the ql-users list and directly of Marcel. There is no overall Pointer Environment version. There
 are separate versions of PTR_GEN, WMAN and HOT_KEYS but nothing collective. To
 this end, this manual has been given it's own version number, this relates
 to the manual only and (unfortunately) not to the Pointer Environment.
The Publican toolchain is a system from
 creating documentation for a product, and that product must have a version
 number. Without a version number, we get spurious zeros all over the place
 in the final documents, so I've given the manual a version of it's own, and
 that version is '3'. Why three? Because, I figured:
	Tony's version would have been Manual version 1.

	Jochen's version would have been version 2.

	Marcel's pdf version would also have been version 2, maybe
 2.5 had the updates from PE 2.71 been implemented.

So, therefore, my initial version shall be deemed to be version 3.
 Obviously, as time goes by and new updates are added, this shall increase,
 probably not by much though, but the initial version of the manual is
 3.0.
Cheers,
Norman Dunbar.

Part I. Introduction & Concepts

The sections in Part I present an introduction to the Pointer
 Environment as well as some of the concepts behind it.

Chapter 1. Introduction

1.1. The Pointer Toolkit

The Pointer Toolkit is aimed at applications programmers who
 wish to produce programs of the new "user-friendly" type. While many
 writers have produced very successful menu and pointer driven programs,
 there have so far been no agreed standards, resulting in users having to
 learn a new interface for each program, and each programmer having to
 re-invent the wheel to implement his own menu and/or pointer system. With
 the advent of the QJUMP Pointer Environment, all this is in the
 past. The programmer is relieved of the burden of writing the whole of the
 user interface, often 90% of the programming effort, and can concentrate
 on providing a good range of facilities. Users end up with a program which
 they know how to drive even before they open the box.
The Pointer Environment is a complex piece of software which has
 been in development for many years at the time of writing, and is
 occasionally still being improved today. We therefore make no apology for
 the length of this manual, nor for the amount of effort required to start
 using the software: if it were an evening's work to learn all about it, it
 would not be a useful tool. We realise that there are likely to be aspects
 of the software which programmers would like to see treated in greater
 detail: anyone experiencing problems in using the software is always
 welcome to contact us (preferably by letter) and we will do our best to
 advise.
The software is in several parts. The Pointer Interface extends and modifies the QL's standard
 screen driver (the CON_/SCR_ device), taking care of the non-destructive
 windows and the position and appearance of the pointer sprite (arrow,
 padlock etc.): in addition it provides some extra TRAPs to read the
 pointer position, save window contents, write graphics objects and so
 on.
The Window Manager provides a set of utilities for manipulating
 windows. It works on data set up in memory, defining the size, position,
 colour and contents of windows. Routines are provided to draw, move and
 remove a window, re-draw part of a window, and to get user input via a
 window. If used from machine code then the programmer may provide routines
 to be called under particular circumstances (e.g. hitting the QUIT item):
 from SuperBASIC the options are more limited, since SuperBASIC procedures may not be called from within machine
 code routines. The Pointer Interface must be present to use the Window
 Manager.
The combination of the Pointer Interface and Window Manager is called the Pointer Environment.
The SuperBASIC Pointer Toolkit gives the SuperBASIC programmer access to the Pointer Environment via a set of special procedures and
 functions. While not quite as flexible as machine code, particularly when
 using the Window Manager, it provides a suitable base from which to
 explore the system before attempting to use it from machine code. Both the
 Pointer Interface and the Window Manager must be present to use the
 Pointer Toolkit.
Various applications are provided as examples of machine code and
 SuperBASIC programs using the Pointer Environment: the SuperBASIC programs require the Pointer Toolkit, the machine
 code ones do not. The SuperBASIC sprite editor EDSPR uses only the extension routines that call the Pointer
 Interface: the painting program PAINT also uses the Window Manager routines. There is a DEMO
 program which was written in SuperBASIC and then re-written in machine code: both
 versions do the same things, but achieve them in slightly different
 ways.
For the machine code programmer there are some INCLUDE files of the
 keys needed to use the Pointer Environment from assembler programs: a set of macros
 is also provided to assist with setting up window definitions. These are
 suitable use with the GST Macro Assembler and
 Linker: other assemblers and linkers may need modified
 versions.
1.1.1. Where to start

You should read the next section, describing the Pointer Environment and some of the concepts it uses. Once
 you understand this you are well on the way to being able to write your
 own programs. The next stage is to examine Section 1.6, “The Demonstration Programs”, either the SuperBASIC _BAS version
 or the _ASM and _BIN assembler version, depending on how strong
 you feel! The demo doesn't do anything very useful, but it does show you
 how to set up a simple menu with all the facilities described.
After this, you're on your own. SuperBASIC programmers will find a description of the new
 routines in Section 3.1, “Keywords”, with Section 3.2, “Index of keywords” at the end. Assembler programmers have
 a description of the new TRAPs in Section 4.1, “Programmer's Interface”, and the window manager vectors in
 Section 4.1.2, “Window Manager”. Of interest to all will be
 Chapter 2, Concepts, and Section 4.2, “Data Structures”, although the latter is essential
 reading only for assembler programmers

1.1.2. Compiled SuperBASIC

You may wish to compile SuperBASIC programs using the Pointer Toolkit to take advantage of the increased speed
 and multitasking which are made possible by compiled SuperBASIC
 programs. There are some problems in doing this, whether you are using
 Digital Precision's Supercharge/Turbo compilers or Liberation Software's Q_Liberator.
Supercharge and Turbo do not permit machine code extensions to return
 changed parameter values, and so the extensions to read the pointer
 position, RPTR, and to set one line of
 a sprite, SPLIN, will not work.
 Furthermore, array parameters are not permitted, so neither SPSET nor the majority of the Window Manager extensions will work.
Q_Liberator restricts the amount of stack that a machine code
 extension may use to a smaller amount than that provided by the
 interpreter: while both allowances are more than stated in the QL
 Technical Guide, the large amount of stack used by the Window Manager
 causes problems with Q_Liberated programs compiled using versions up to
 and including v3.12. Versions 3.21 onwards have an increased stack
 allowance which fixes this problem, and a utility program, called
 STKINC, is provided to overcome this problem in older
 versions of Q_Liberator - see Chapter 6, Utilities for
 details.

1.1.3. Bug "fixes"

Some toolkits and extensions "fix bugs" in SuperBASIC by replacing
 ROM routines with their own: where these cause more trouble than they
 cure the old routine may be restored using the FIXPF utility, described in Chapter 6, Utilities.

1.2. History, Geography, Philosophy & Economics

Why the world is the way it is.
As you will have noticed, all QJUMP software comes split into a
 number of separate components, which need to be assembled correctly to
 "install" the new facilities on your QL. Why have we made life so
 difficult for you?
In the beginning (always a good start, that), the QL was designed to
 be an expandable multitasking machine, allowing you to use software from
 many suppliers simultanously to achieve an environment that you can work
 with comfortably. If you feel that your word processor program is too
 large or too slow, you can change to another one without changing your
 spreadsheet or database, which must surely be an improvement over the
 pre-packaged "integrated programs" available for the current series of IBM
 PCs and clones. The situation is very like buying hi-fi. You can go for
 the music centre or tower system, with everything in one box and known to
 be compatible, or you can take a little more trouble and buy separate
 components from different manufacturers: the latter solution may result in
 a bird's nest of wire and a pile of different styled boxes, but the
 performance will probably be closer to what you were after.
Given the above design philosophy, software for the QL falls into
 two categories. "Resident extensions" expand the facilities available to
 the system, by adding new devices or SuperBASIC procedures: RAM disks and
 SuperToolkit II are examples of resident extensions. "Transient programs"
 provide services to the user, allowing you to edit text or pictures, play
 games or what have you: Quill is a typical transient program. As implied
 by the name, resident extensions are designet to be loaded at the start of
 a session, and remain resident until the QL is restarted. They should be
 loaded into the "resident procedure area": space for the extensions may be
 reserved in this by a call to SuperBASIC's RESPR function, and cannot be
 freed once allocated. Transient programs are started by the user as
 required, and disappear from memory when terminated, leaving it free for
 other transient programs. Space for transient programs is allocated in the
 "transient program area" by SuperBASIC's EXEC procedure or QPAC II's EXEC
 etc. menus., and automatically reclaimed by the operating system when the
 program is terminated.
A limitation imposed by the operating system in the QL is that while
 there are programs in the transient program area, additional space may not
 be allocated in the resident procedure area. If you try to allocate more
 space, using RESPR or LRESPR commands, you will get a "not complete" error
 message. Ideally you will know what extensions may be required during a
 session, and arrange for them all to be loaded before starting any
 programs. In an emergency you can remove all transient programs so that
 another extension can be loaded, but this is not very convenient! The
 reason for the limitation is that transient programs "live" just below
 resident extensions in the memory, both "grow" downwards, and transient
 programs cannot be moved to make space for new extensions.
The reason for QJUMP's software being split into separate components
 thus becomes clear. Some components can be written in such a way that they
 extend the facilities available via operating system, for instance by
 adding new devices or extending old ones. The Pointer Interface extends
 the Screen Device Driver, the SPELL device is a completely new one. These
 extended facilities can then be used, not only by the other components of
 the software package as supplied, but also by other software writers in
 their own code. The benefits of this approach are manifold. Firstly, any
 "dirty" code that is required can be buried out of sight in the
 extensions, so applications that use them can be totally clean: if any
 problems arise from the dirty code then only the extensions need be
 changed. Secondly, the extensions will often provide much of the
 "difficult" code: writing a menu-driven spelling-checking word processor
 is much simpler if you don't have to consider how to implement pull-down
 menus or the best method of complessing a word list. Thirdly, applications
 can be smaller, leaving more space for further applications or user data,
 and making them easier to debug. This is particularly valuable with the
 Pointer Environment, which occupies about 25k. If it were included in
 indivdual programs, then they would be approximately that much bigger, and
 you would not get the benefit of non-destructive windows in other
 programs.
So the typical QJUMP software package consists of a set of "public"
 extensions, which are loaded in by your BOOT program, plus the application
 itself, which may be EXECuted as required. The applications themselves
 tend to be quite small, because they share the extensions with
 others.
Where it is useful to run more than one copy of an application at
 once, a further trick may be addeed: a separate job may be started for
 each copy, but the same code can be shared by both jobs, thus economising
 on the total space required. This will only work if the application has
 been written properly, so that is does not modify its own code or embedded
 data. In this case the code is said to be "re-entrant". This approach is
 used by the "hotkey" facility provided by the QRAM package, and is
 improved by the HOTKEY System II, which comes with QTYP II, QPAC II, QD or
 the QL-Emulator for the ATARI ST. Each time when a given hotkey is pressed
 a new copy of an application is started as if executed from microdrive or
 disk, but without the same speed or memory penalty.

1.3. Sample BOOT programs

The QL's BOOT facility is intended to be used to set up the QL with
 all the resident extensions required for a session, which may come from
 many different sources. The BOOT file is also used in much commercial
 software to give users instant access to their new software - many users
 never progress beyond this point, but re-boot their QLs every time they
 wish to change programs!
Modifying your existing BOOT program to cope with new software can
 vary from the very easy to the impossible. Very easy BOOT files would
 consist of EXEC devN_filename, in which case no changes are necessary to
 your own BOOT. Difficult conversions are where the software's original
 BOOT file indulges in copyright messages, pretty borders, playing tunes or
 other methods of obscuring the useful bits of code. Impossible BOOT files
 are those which include POKEs, or start an application with a CALL
 statement - these can sometimes be used, but require the attention of an
 expert machine code hacker to convert them to a sanitary form.
To modify your BOOT program, you will have to determine which
 resident extensions are needed to run the software. This may be apparent
 from the manual, or can be found by examining the software's own BOOT
 file: any code loaded by statements of the form
 base=RESPR(size):LBYTES devN_filename,base:CALL base
 may be assumed to be a resident extension. The statements can be copied
 into your own BOOT file at the appropriate point, and the file itself
 copied to your normal BOOT disc. The above form may be scattered over a
 number of lines, or obscured by reserving just one area with the RESPR
 call and LBYTESing several files into it, but the principle remains the
 same.
In the following examples, the file sizes given are not necessarily
 accurate: you should use the QRAM Files menu or SuperToolkit II to find
 the actual size required. It is assumed that the boot medium is in
 "flp1_": this can of course be changed to any device of your choice. All
 the examples use the "ptr_gen" version of the Pointer Interface, which
 works with the QJUMP Internal Mouse Interface, the QL-Emulator for the
 ATARI ST or the Sandy SuperMouse interface, as well as the keyboard. It
 supersedes previous versions of the Pointer Interface such as "ptr_kbd",
 "ptr_imi" and that invoked by the Sandy SuperMouse POINTER command.
1.3.1. A simple BOOT file to load and enable QRAM

100 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
110 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
120 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
130 HOTKEY
The HOTKEY statement in line 130 starts a transient program called
 HOTKEY, which is responsible for acting on the "ALT /" keystroke and
 starting QRAM. Once this program is present, it is impossible to reserve
 space for any more resident extensions without removing the HOTKEY
 program, so the HOTKEY statement will always occur after all the RESPR
 statements in the BOOT file.

1.3.2. Including SuperToolkit II with QRAM

100 base=RESPR(16384):LBYTES flp1_tk2_rext,base:CALL base
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY
or:
100 TK2_EXT
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY
Line 100 initialises SuperToolkit II, in the first case from a
 file "tk2_rext" produced using the configurable version of the toolkit,
 in the second case from the ROM on a suitably-equipped disc
 interface.

1.3.3. A BOOT file for QRAM and QTYP together

100 base=RESPR(5424):LBYTES flp1_qtyp_spell,base:CALL base
110 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
120 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
130 base=RESPR(29538):LBYTES flp1_hotkey,base:CALL base
140 HOTKEY
As for the SuperToolkit II example, the SPELL extensions are
 loaded in the normal way: the QTYP program itself is assumed to be
 included in the "flp1_hotkey" file with QRAM.

1.3.4. SuperToolkit II, QMON, QRAM, QTYP, QPTR, and RAM disc

100 base=RESPR(16384):LBYTES flp1_tk2_rext,base:CALL base
110 base=RESPR(11242):LBYTES flp1_qmon_bin,base:CALL base
110 base=RESPR(5424):LBYTES flp1_qtyp_spell,base:CALL base
120 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
130 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
140 base=RESPR(29538):LBYTES flp1_hotkey,base:CALL base
150 base=RESPR(9234):LBYTES flp1_qptr,base:CALL base
160 base=RESPR(5108):LBYTES flp1_ramprt,base:CALL base
170 HOTKEY
200 OUTLN #0;512,256,0,0
210 IF RMODE=8 THEN
220 WINDOW #0;448,40,32,216
230 ELSE
240 WINDOW #0;512,50,0,206
250 END IF
260 AT #0;1,0
This loads all QJUMP products. Apart from having to load "wman"
 after "ptr_gen", the order of files is unimportant. As usual, the call
 to HOTKEY must come last. Lines 200 onward are needed if the Pointer
 Toolkit is to function correctly.

1.3.5. QRAM and Jochen Merz's QD

100 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
110 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
120 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
130 base=RESPR(14386):LBYTES flp1_menu_rext,base:CALL base
140 HOTKEY
QD Version 2 or 3 from Jochen Merz Software requires the Menu
 Extension if it is to run, so the "menu_rext" file is loaded in the BOOT
 file. A copy of this Editor may then be started at any time by EXECuting
 it from SuperBASIC, thus: EXEC flp1_QD It may also be
 started from QRAM's or QPAC II's Files menu, of course.

1.3.6. QRAM and Q_Liberator runtime system and extensions

100 base=RESPR(10016):LBYTES flp1_qlib_run,base:CALL base
110 base=RESPR(1928):LBYTES flp1_qlib_bin,base:CALL base
120 base=RESPR(1476):LBYTES flp1_qlib_ext,base:CALL base
140 base=RESPR(12388):LBYTES flp1_ptr_gen,base:CALL base
150 base=RESPR(7762):LBYTES flp1_wman,base:CALL base
160 base=RESPR(25882):LBYTES flp1_hotkey,base:CALL base
170 HOTKEY
This example loads the extensions used to run the Q_Liberator
 compiler, which may then be run as detailed in the manual. As the
 runtime system is also loaded, any Q_Liberated programs which do not
 include it may also be EXECuted.
QRAM is supplied with a utility called BOOT_MAKE, which may be
 used to speed loading of resident extensions by putting them all into
 one long file, which loads faster than many shorter files. As a
 side-effect, there may be a slight reduction in the amount of memory
 required.
BOOT_MAKE produces two files, a SuperBASIC file normally called
 "flp1_boot", and the resident extensions file which is of the same name
 but with the extension "_rext". Extension files may be copied from any
 number of source media into the "_rext" file, changing the source medium
 as required: as the destination medium is always being written to, it
 must stay in the drive until BOOT_MAKE has finished. The dialogue to
 produce an BOOT file equivalent to that described in example 5 above
 might be as follows:
Boot filename> flp1_boot
Command (ESC to finish)>
Extension file (ESC to finish)> flp2_xtras
Extension file (ESC to finish)> flp2_ptr_gen
Extension file (ESC to finish)> flp2_wman
Extension file (ESC to finish)> flp2_hotkey
Extension file (ESC to finish)>
Command (ESC to finish)> hotkey
Command (ESC to finish)>
The resulting BOOT file would be:
100 base=RESPR(52106):LBYTES flp1_boot_rext,base:CALL base
110 hotkey

1.4. The Pointer Environment

The Pointer Environment for the QL is a comprehensive display
 handling interface which improves on the QL's simple window system. It
 differs from the QL's standard interface in two respects. Firstly, the
 interface allows overlapping non-destructive windows. Secondly, a window
 (and by association a job) may be selected for attention directly, using a
 pointer, as well as indirectly, using the "CTRL C" key on the
 keyboard.
These differences are intended to be as invisible as possible to
 existing software: in particular, a considerable amount of time has been
 spent ensuring that the commonly-used Psion packages will run happily. The
 major implication of the differences is that significantly more memory is
 required when using the Pointer Environment.
The Pointer Environment is implemented as two levels. The normal
 entry is to the Window Manager level, which handles windows and menus. The
 Pointer Interface level is used by the Window Manager and provides extra
 Trap #3 entries as used for standard IO operations.
1.4.1. Pointer

All pointer input from the user is directed to a point on the
 display. The pointer may be visible or invisible, and it may be moved by
 the cursor keys, joystick or pointing device or else its position may be
 set directly, either by the Window Manager as a result of a single
 keystroke, or by an application program.
An object shown on the display may be "hit" by moving the pointer
 to the object and pressing SPACE, the fire button on a joystick or the
 left button on a mouse. Within a menu, a keystroke may cause a "hit" as
 well as setting the pointer position. This allows a menu to be treated
 either as a single key command system, or else as a point and hit menu
 system. A "hit" on an item will usually select or de-select that item,
 but only rarely causes other action to be taken.
ENTER or the right mouse button is known as "do": this differs
 from a "hit" in that it usually selects the current item and results in
 an action being performed. The exact interpretation of the difference is
 ultimately left to the programmer.
Note

An application may only get pointer input from a "managed"
 window. It is thus very important that any window intended for pointer
 input should have had its outline set, to signal to the Pointer
 Interface that it is managed: see Section 3.1, “Keywords”
 , Chapter 2, Concepts, and Section 4.1, “Programmer's Interface” for details.

1.4.2. Windows

In the context of the Pointer Environment, a window is more than
 just a portion of the display. An application using the display has just
 one primary window. Sub-windows may be enclosed within this window,
 allowing multi-window operation of application programs. An application
 may open secondary windows within its primary window, but it may not use
 the area of the display outside its primary window. A secondary window
 may have sub-windows itself, each enclosed within the secondary window
 area. Such secondary windows are frequently used to provide pull-down
 menus. Depending on the complexity of the application, it may be useful
 to pull down further windows from within a pull-down menu: these
 "daughter" pull-down windows are limited to be within their parent
 primary, not their parent pull-down,
 otherwise pull-down menus would have to get progressively
 smaller!
The distinction between a sub-window and a secondary window is
 that a sub-window is merely a division of a window: it does not have its
 own channel. A secondary window, however, is a genuine IO channel with
 its own independent existence. The Window Manager utilities assume that
 when one or more secondary windows have been pulled down, all IO
 operations by that job will be carried out within the most recently
 pulled-down secondary until it is thrown away.
The size and position of a window (primary or secondary) may be
 changed by the job that owns it at any time: it is up to the programmer
 to provide this facility, where appropriate, to enable the user to
 adjust the display to execute as many jobs as he wishes at any one
 time.
Where primary windows overlap, the window below is locked until
 the window above is moved or removed, or the window below is brought to
 the top of the pile. It is possible to move a window to the top of the
 pile by "hitting" it. While a window is locked it may not be modified,
 so applications which rely on continuous modification of their windows
 (e.g. the ubiquitous clock programs) will not work as intended. It is
 possible to unlock windows, so that they become destructive.

1.4.3. Menus

The Window Manager includes facilities for handling menus. A menu
 is a collection of items which may be "hit". Menu items may be of
 several types: text, blobs, patterns and sprites. Menu items may also
 have several uses. "Hitting" an item may cause an action, it may select
 the item for some future action or it may cause a further pull down menu
 window to be invoked.
The primary window, and any other window pulled down, is treated
 as a menu. There are a number of standard menu items which will appear
 in many windows: these have standard "hit" keystrokes which should be
 used to keep software consistent between different packages.
Cancel
Should always be present to enable a window to be removed
 without doing any (further) operation. This item should be "hit" by
 the keystroke ESC.
Help
Should usually be present to provide assistance to the user.
 This item should be "hit" by the keystroke
 F1.
Do
May sometimes be present to do any actions set up within the
 window. This item should be "hit" by the keystroke
 ENTER.
Move
Should usually be present to allow the window to be moved. This
 item should be "hit" by the keystroke CTRL
 F4.
Size
Will be present if it is possible to change the size of a
 window. This item should be "hit" by the keystroke CTRL
 F3.
Wake
Will be present if it is possible to update the contents of a
 menu. This item should be "hit" by the keystroke CTRL
 F2.
Sleep
Allows you to put the current menu to sleep, which means, set it
 to a button. This item should be "hit" by the keystroke CTRL
 F1.
A window is usually divided into sub-windows. There are
 information sub-windows, which are used for titles, general information
 etc. There are menu sub-windows, which are used for collections of
 similar items under the control of the Window Manager level. And there
 are application sub-windows which are only used by the application code.
 An application sub-window has a similar structure to a menu sub-window,
 but omits part of the standard definition.
It is not necessary for menu items to be within a menu sub-window,
 they can be put anywhere within the window. This type of item is termed
 a loose menu item.

1.4.4. SubWindows

The function of the menu and application sub-windows is defined by
 the application itself (hence the name). Frequently they will be used to
 display large amounts of information, facilities being provided to
 scroll, pan or fold this information if there is not enough room for all
 the items or information within the sub-window.
The menu items for scrolling, panning and folding a sub-window are
 part of the definition of a sub-window, and should appear whenever the
 sub-window is too small to display all the information.
There may be a "scroll bar" to the right of a scrollable
 sub-window. This scroll bar is a map showing the portion of the
 sub-window contents which is actually visible within the vertical range
 of the sub-window contents. "Hitting" the scroll bar will scroll the
 sub-window to the hit position. Within the sub-window there may be arrow
 bars to allow the sub-window to be scrolled a row or a page at a
 time.
Similarly there may be a "pan bar" below a pannable sub-window.
 Panning and scrolling may also be invoked by ALT arrow and SHIFT ALT
 arrow keystrokes.
Folding a sub-window is accomplished by splitting the sub-window
 and independently scrolling or panning part of the sub-window. In order
 to keep track of which parts of a folded sub-window are visible, there
 may be an index row above the sub-window or an index column to the left
 of the sub-window (or both). Splitting or joining the parts of the
 sub-window is accomplished by a "do" keystroke on the scroll or pan bar
 to the right of or below the sub-window.

1.4.5. Objects, Items etc.

An object is something represented on the display. An object may
 be text, a sprite, a pattern or a blob. Text is just readable
 characters. A sprite is a picture of something, on a transparent
 background: a sprite is the only type of object which may be used as
 both a pointer and a menu item. A pattern is a (repeating) pattern of
 colours, but has no limits and so no shape. A blob defines a shape, but
 has no colour or pattern. Combining a blob with a pattern produces a
 visible object.
An item is part of a menu. An item may consist of more than one
 object. All the objects comprising an item are linked together, and so
 "hitting" one object within an item selects all the objects. To simplify
 the code and to make execution as fast as possible, all the objects
 within one item should be contiguous within the object list.
There are three main states for a menu item: unavailable (cannot
 be selected), available and selected. In addition, an available or
 selected item may be the current item (the item that the pointer points
 to) or not. The current item is indicated by a border around it, and the
 three main states are indicated by various colour attributes, blobs or
 patterns.

1.4.6. Window Definition

When a window is pulled down, or redrawn, the window definition
 provides all the information required to draw the window, its border,
 the menu items in the window, the sub-windows and their borders and the
 menu items within the sub-windows. After a window is pulled down, the
 menu definition provides all the information to process hits.
 Unfortunately, because a window may be moved and have its size and shape
 altered, much of the information will tend to be variable. The basic
 window definition is treated as invariant, as this will usually be
 either in ROM or in program RAM. On setting up a window, a variable RAM
 based "working definition" will be created. The table below shows the
 structure of a window definition: it is described in more detail in
 Section 4.2, “Data Structures”.
Window definition
 window size
 window origin
 window attributes
 window pointer sprite
 window help pointer
 loose menu item attributes

 loose menu object list
 object hit area
 object justification rules
 object type (text, sprite, pattern, blob)
 object selection keystroke
 object pointer
 item number
 action routine pointer

 information sub-window list
 information sub-window size
 information sub-window origin
 information sub-window attributes
 information object list
 object size
 object origin
 object type (text, sprite, pattern, blob)
 object attributes
 object pointer

 application sub-window list
 menu / application sub-window size
 menu / application sub-window origin
 menu / application sub-window attributes
 pointer sprite pointer
 setup routine pointer
 draw routine pointer
 hit routine pointer
 control routine pointer
 maximum number of control sections
 sub-window selection keystroke

 sub-window control definitions
 control block pointer
 index size/spacing
 index item attributes
 control item attributes

 menu item attributes
 number of columns and rows
 offsets to start of columns/rows
 object spacing lists
 object spacing
 object hit area
 row list
 start object pointer
 end object pointer
 object lists
 object justification rules
 object type (text, sprite, pattern, blob)
 selection keystroke
 object pointer
 item number
 action routine

1.4.7. Event Vector

The event vector is a record of all the events which have occurred
 since a call was made. There are several levels to the complete Pointer
 Environment. On entry to each level, its events in the vector are
 cleared: on return through a level, the events which have occurred
 within that level are added to the vector.
The vector is a long word, each major level has 8 bits reserved
 for its own events:
Table 1.1. The event vector.
	Level	Bits	Description
	Pointer Level (pt_pevnt)	0	Keyclick detected
	1	Key down
	2	Key up
	3	Pointer moved
	4	Pointer moved out of the window
	5	Pointer was in the window
	6	Pointer hit the window edge (border)
	7	Not used
	Sub-window (pt_sevnt)	8	Sub-window split
	9	Sub-window join
	10	Sub-window pan
	11	Sub-window scroll
	12-15	Not used
	Window (pt_wevnt)	16	Do
	17	Cancel
	18	Help
	19	Move
	20	Resize
	21	Sleep
	22	Wake
	23	Not used
	Job Level (pt_jevnt) - SMSQ and SMSQ/E only,
 version 2.71 onwards.)	24	Key or button pressed. Request resize (with bit
 31)
	25	Key or button pressed subject to autorepeat. Request move
 (with bit 31)
	26	Key or button released
	27	Pointer moved from given co-ordinates
	28	Pointer moved out of window
	29	Pointer is inside the window
	30	Pointer hit the window edge
	31	Window request. Used also with bits 24 and 25.

1.5. What you get

The following two files are used to add the Pointer Toolkit
 facilities to the QL when you start it. You will probably wish to merge
 the BOOT file with your existing BOOT to include other extensions.
	BOOT

	BOOT_REXT - contains PTR_GEN, WMAN, QPTR and STK2

Qram owners wishing to re-create their BOOT_REXT to include the
 Pointer Toolkit and upgraded Pointer Interface and Window Manager should
 include these files in this order. The PTR_GEN version of the Pointer
 Interface supports the QJUMP Internal Mouse Interface, the Thor and Atari
 ST keyboard and mouse interfaces, and the Sandy SuperQBoard with mouse
 interface. If for some reason you have both the SuperQBoard and QIMI then
 the QIMI is used. SuperQBoard owners should omit the POINTER command from
 their BOOT file, as PTR_GEN replaces and upgrades the built-in version of
 the Pointer Interface. If you have SuperToolkit II then you can omit
 STK2.
	PTR_GEN - Pointer Interface, general version

	WMAN - Window Manager

	QPTR - SuperBASIC Pointer Toolkit

	STK2 - cut-down version of SuperToolkit II

The following files are SuperBASIC demonstrations of the Pointer
 Toolkit.
	DEMO_BAS - SuperBASIC version of the demo

	PAINT_BAS - painting program, uses the Window Manager

	PAINT - compiled version of the above

	EDSPR_BAS - sprite designing program, does not use the Window
 Manager

The following files contain the assembler sources for a machine-code
 version of the above DEMO_BAS program, suitable for assembling and linking
 using the GST Macro Assembler. The last four are: two files of keys
 required, the linker command file to link with, and a readyassembled and
 linked version of the program.
	DEMO_ACTION_ASM - action and hit routines

	DEMO_DRAW_ASM - window drawing routine

	DEMO_INIT_ASM - initialisation and termination

	DEMO_MLYOT_ASM - menu layout

	DEMO_MMAIN_ASM - main menu definition

	DEMO_SETUP_ASM - menu setup routine

	DEMO_SPRITE_ASM - sprites used in the demo

	DEMO_TEXT_ASM - text used in the demo

	DEMO_WMAN_ASM - action routines that call the Window
 Manager

	DEMO_KEYS - keys for the above files

	DEMO_SMS - SMS2 keys used in the above files

	DEMO_LINK - linker command file

	DEMO_BIN - assembled version of the demo

	QPTR - The Pointer Environment

The following files may be INCLUDEd in your own assembler files to
 define suitable symbols for the manipulation of the data structures in the
 Pointer Environment.
	WMAN_KEYS - keys for vectors etc.

	WMAN_WDEF - window definition structure

	WMAN_WSTATUS - window status area structure

	WMAN_WWORK - working definition structure

	WMAN_MENU_MAC - menu generating macros

	WMAN_TEXT_MAC - text string generating macros

	QDOS_IO - keys used to access the Pointer Interface

	QDOS_PT - external keys for the Pointer Interface

	PTR_KEYS - internal keys for the Pointer Interface

	KEYS_COLOUR - some useful colours

	KEYS_K - symbolic names for keystrokes

Some utility programs are provided to modify screen images and
 compiled SuperBASIC programs. There is also a procedure to restore the ROM
 definitions of SuperBASIC procedures and functions. These are documented
 in Chapter 6, Utilities.
	CVSCR - convert screen utility

	STKINC - stack increase utility

	FIXPF - SuperBASIC "ROM restore" utility

Versions of the Pointer Interface and Window Manager as shipped with
 Qram v1.07 are included - they will only be of interest to writers of
 commercial software who wish their products to be compatible with older
 versions of the Pointer Environment.
	OLD_PTR_KBD - old version of Pointer Interface (v1.05)

	OLD_WMAN - old version of Window Manager (v1.03)

CONFIG - the standard configuration program - is explained in the
 last part of this manual. The following files are provided to allow you to
 implement own configuration blocks in your assembly programs.
	CONFIG - the CONFIG program itself

	CONFIG_MAC - macros for setting up config blocks

	CONFIG_DEMO_ASM - a demonstration of the use of the
 macros

1.6. The Demonstration Programs

Four demonstrations are included with the Pointer Toolkit. The
 SuperBASIC ones will all run on a QL as set up by the BOOT file supplied.
 When you get to the stage of reconstructing your own BOOT file to add QPTR
 to it, you should note that the demos use SuperToolkit II routines, as
 included in the STK2 file. In addition, it is vital that SuperBASIC is
 flagged as "managed" - lines 110 to 160 of the BOOT file supplied contain
 the magic to do this, and may usefully be copied into your own BOOT
 file.
Two of the demonstrations are of no practical use, but serve to
 compare and contrast the way in which the facilities of the Pointer
 Environment are used from SuperBASIC and machine code. These are the files
 starting with the DEMO_ prefix.
The SuperBASIC program EDSPR demonstrates that it is possible to
 write pointer-driven programs without using the Window Manager parts of
 the Pointer Toolkit: you should also find it of use when designing sprites
 for use in machine code programs.
The SuperBASIC program PAINT demonstrates one or two areas of the
 Window Manager interface not used in the DEMO_ files, such as partial
 window operations and the graphics object drawing operations.
Both EDSPR and PAINT have been successfully compiled and run, using
 the Q_Liberator compiler: a compiled version of PAINT is supplied. If you
 re-compile PAINT, you may need to process the result with the STKINC
 utility to run it, as it uses the Window Manager. EDSPR may be compiled
 and run as is, because it does not use the Window Manager. See the
 Utilities chapter for more details.
1.6.1. The DEMO_ programs

The DEMO_ programs come in two versions: the version ending in
 _BAS is SuperBASIC, and may be LOADed and RUN in the normal way: the
 version ending in _BIN is machine code, and may be EXECuted from the
 SuperBASIC command line or the FILES menu of Qram.
Programs using the Window Manager go through a number of similar
 stages in their execution. They start by using the pointer information
 TRAP IOP.PINF to find the Window Manager vector. This may fail due to
 the absence of either the Pointer Interface or the Window Manager, it
 which case the program will probably have to give up. SuperBASIC
 programs find the Window Manager vector every time a Pointer Toolkit
 routine which requires it is used.
The next stage is to combine the static definition of the initial
 window with any dynamic information
 that may be required. The static definition is normally contained within
 the program itself, either in SuperBASIC DATA statements or in a Window
 Definition generated by the assembler using the macros provided or DC.x
 directives. The dynamic information may be generated before, during or
 after the conversion of the static definition to a "working definition",
 or any convenient combination of the three. For instance, the assembler
 version of the demo has a zero pointer to the "You have used the
 BEEP..." information in its static definition, and generates the
 complete string and resets the pointer in the working definition once
 the working definition has been mostly set up by the WM.SETUP
 routine.
Once a working definition has been generated, the window may be
 positioned and drawn - this is one operation in SuperBASIC, and two in
 machine code. User-defined code may be supplied to draw some
 non-standard parts of the window, for instance the musical staff in the
 demo program.
Now that the window is visible, input may be invited and acted
 upon. In machine code, the Window Manager can be made to do some of the
 hard work of deciding what the input consisted of and calling an
 appropriate action routine. In SuperBASIC this selection of an action
 routine has to be done by the SuperBASIC program itself.
The SuperBASIC version splits into three major units. Lines 1000
 to 9999 contain the "action" part of the program, which sets up the data
 structures and changes them in response to user input. Lines 10000 to
 19999 contain the "initialisation" part of the program, and also the
 data used to describe the window layout. Lines 20000 onwards contain
 "setup" routines usable in any SuperBASIC programs to set up window
 definitions.
The window you see is defined by the contents of the DATA
 statements in lines 12000 to 19999. It has four "loose menu items",
 defined in lines 12620 to 12720. It has two "information sub-windows",
 defined in lines 12840 to 12960: these contain two and one "information
 items" respectively, defined in lines 12730 to 12830. There are two
 "application sub-windows": the one defined in lines 13550 to 13590 has a
 short definition, implying that anything happening in that window needs
 to be dealt with by SuperBASIC. The second application sub-window is
 also a menu sub-window: the items it contains are defined in lines 12970
 to 13140, their "spacing lists" in the X and Y directions in lines 13150
 to 13320, and the "row list" splitting the linear item list into rows in
 13330 to 13420. The "control definition" is set up in lines 13430 to
 13500: this gives the two independently-scrollable sections. Three
 sprites are defined in lines 12200 to 12610: the first two are used as
 pointers, the last in the "move window" loose menu item. One set of
 standard colours and window attributes are used for all items and
 windows: these are defined in lines 12110 to 12190 and 12040 to 12100
 respectively.
The definitions mentioned above are initialised by the setup
 functions and procedures at the end of the program. These expect DATA
 statements of the appropriate form, which are READ into arrays and the
 data structures set up by calling the corresponding MK_xxx function
 which is provided by the Pointer Toolkit. The result of this is passed
 back and may be used in subsequent DATA expressions: for instance, the
 main application window table, defined in lines 13520 to 13670, is then
 referred to in line 13740 by a DATA statement defining the contents of
 the window. The variable used here is main_awt: similarly the other
 variables main_sprite, main_lot and main_iwt have been defined earlier
 and are now referred to when setting up the main definition. The
 necessity to do this results in the "bottom-up" sequence of window
 definition in SuperBASIC, as opposed to the "top-down" sequence possible
 in assembly code, and which is probably more readable.
Once set up, the "action" part of the program then uses the
 Pointer Toolkit procedure DR_PULD to draw the window, and waits for user
 input by using the RD_PTR procedure. The result of the input is then
 acted upon. If the input occurred in the first application sub-window,
 then a note of the appropriate pitch and duration is played: clearly,
 any action could be taken here, depending on the application, so such
 sub-windows are very flexible but require more effort on the part of the
 programmer. The second sub-window, being a menu sub-window, is taken
 care of entirely by the Window Manager. Finally a hit on a loose menu
 item produces a returned sub-window number (swnum%) of -1, and radically
 different effects depending on which item is hit. Quit is quite simple,
 and just stops the program after discarding the window contents with a
 call to DR_UNST: ALL copies its resulting state to all items of the menu
 sub-window, and re-draws that sub-window: BEEP makes a simple beep, and
 changes and re-draws an information sub-window: and the move window item
 uses the supplied routine to move the window, and then resets its own
 state to available. The SELect ON construction here is peculiar to the
 SuperBASIC interface to the Window Manager. In the machine code version
 each item has its own "action routine" which is called as a result of
 the Window Manager having done its own equivalent of the SELect
 ON.
The machine code version in DEMO_BIN is made up of all the _ASM
 files, assembled and linked together as specified by the _LINK file.
 MENU_ASM and SPRITE_ASM define the data structures, INIT_ASM and
 SETUP_ASM convert them into a "working definition", DRAW_ASM provides a
 routine for drawing the staves in the first application sub-window, and
 ACTION_ASM provides all the routines used to act on user input. The
 principal difference in operation between this demonstration and the one
 written in SuperBASIC is that all actions are called directly from the
 Window Manager: the only action resulting from the initial call to
 WM.RPTR returning is after Quit has been hit to kill the job off.
The status area for the window is set up in the job's data area,
 which is pointed to by A6. A small amount of space is left below this to
 keep information which does not belong in the window's status area, such
 as the Window Manager vector. Note the use of dummy COMMON blocks to
 allocate the correct amount of space for the status area, the menu
 status block, the section control block and the variable information
 item. This method of making the Linker do all the hard work does take
 extra time when re-assembling and linking the program, but saves more by
 removing the need to check every file manually when a small change is
 made.

1.6.2. The EDSPR program

This simple program may be used to design sprites, blobs and
 patterns for use in other programs. It produces output that can be
 assembled directly to produce sprite definitions, or edited to produce
 blobs or patterns. You will also need to edit the output for use in
 SuperBASIC programs. To convert a sprite to a blob, you should remove
 the pattern and set the relative pointer to it to zero. Sprites to be
 used as patterns must be a multiple of 16 pixels wide, but require no
 modification. To generate a graphics object that is valid in more than
 one mode, separate definitions for each mode should be linked together
 by altering the relative pointer from its default zero value.
You are provided with a 5x5 initial grid, with each block
 representing one pixel of the sprite to be designed. The grid may be
 expanded and contracted in both directions by using the ADD and DELete
 ROW and COLumn items found in the Functions menu: the pointer sprite
 will change to show which function is currently active. Pixels may be
 set to any colour or transparent (black and white stipple) by selecting
 the required colour from the palette to the left of the main editing
 grid. The area above the palette signals the currently selected colour,
 and also acts as a "test area" so that you can see what the sprite you
 are designing looks like actual size and on varying backgrounds.
The Functions menu also allows you to set the origin of the sprite
 and to change display modes. After using either of these options, or
 selecting SET PIXel mode, or changing the colour to be used, the program
 is in SET PIXel mode and the pointer is the default arrow.
The Files menu gives you the options of saving or loading sprites
 designed with EDSPR: the filename is made up of the program default plus
 the given name plus the _ASM extension. The file format is suitable for
 assembling with the GST Macro Assembler, and also includes a
 human-readable copy of the definition: this is what is used when loading
 a sprite design.

1.6.3. The PAINT program

This program demonstrates pull-down windows, menus of sprites,
 patterns and blobs, and the various graphics object-drawing routines. It
 was developed progressively as a test-bed for the Pointer Toolkit, and
 is thus of fairly modular construction but of only moderate readability!
 To document it fully would double the size of this manual, so we suggest
 that you make a listing, and experiment with the program.
The area that you can work on defaults to a size of 640x640
 pixels: you can move about this area as required, using the MOVE option
 from the Tools menu. If you convert an existing 512x256 screen image
 using the CVSCR utility supplied, and load this, you will not be able to
 move as far. The Files menu allows you to save or load all the picture,
 or just the paste buffer: if you hit the filename then you can enter a
 different name to be used for the save or load operation. The selected
 operation will take place when you hit the OK item or do a "do"
 keystroke.
While drawing, a "hit" will usually start drawing whatever object
 has been selected in the Tools menu. Further "hits" will draw a line or
 flip between changing an ellipse's aspect ratio and its size/
 inclination. A "do" will draw the object at its currently shown
 position, and an ESCape will abandon the current object. While in
 "doodle" mode, a "hit" will drop a blob or sprite, and a "do" will draw
 a line of blobs (but not sprites) from the last blob dropped to the
 current pointer position.
The spray option allows densities of between 5% and 95% when
 spraying patterns: note that with a combination of a small brush (blob)
 and a low density you may find that no pixels are sprayed.
Cut and paste work on rectangular areas smaller than the drawing
 area. If you wish to import an existing screen into the PAINT program,
 some work is necessary, as a whole 512x256 screen is too big to paste
 into the drawing area. The recommended method is as follows:
	convert the screen image using the CVSCR utility

	within PAINT, LOAD the converted image (ALL the picture, not
 the paste BUFFER)

	use CUT and SAVE BUFFER to carve out the chunks you want from
 the screen image

	re-start PAINT, or load a bigger picture to get back to a
 large picture area

	use LOAD BUFFER and PASTE to put the chunks of the screen
 image where you want them

The Brush menu allows you to select various sizes and shapes of
 brush, which are combined with the selected paint when spraying or
 doodling. There are also two sprites (a flower and an apple) which are
 used directly, and not combined with the current paint. You may either
 hit the required brush and then the OK item, or "do" the required brush
 to select it.
The Paint menu provides access to various patterns with which to
 draw, and is used in a similar way to the Brush menu. The patterns at
 the top of the menu are all the possible checkerboard combinations of
 the colours available in the current mode, and may be used to draw
 objects of any sort. Lower down you will find various special patterns
 which can only be used when in the doodling and spraying modes: these
 become unavailable if the line, ellipse or block modes are selected. The
 first four or eight of these special patterns are stipples of the basic
 colours with "transparent" ink, which allow you to blacken, whiten,
 redden etc. parts of your drawing. There are also red gingham and
 brickwork patterns, two sizes of latticework with transparent holes in,
 and a green and transparent grass pattern.
The "Buffer" paint converts the contents of the paste buffer into
 paint, which may be used for doodling or spraying. The area saved in the
 paste buffer must be at least 16 pixels wide, this being the minimum
 allowable width for a pattern. When you select this option, the Paint
 menu is thrown away and you must position the pattern to line it up with
 the existing picture as required - this is similar to the "paste" option
 in the Tools menu. In this case, however, the buffer is only pasted in
 temporarily, and it is truncated in the horizontal direction, so that
 the width is a multiple of 16 pixels.

Chapter 2. Concepts

This chapter is intended as a reference guide to the new concepts introduced by the Pointer Environment, as well as
 some old ones that have acquired a new significance within the Pointer
 Environment. Any terms used in the description of a concept that themselves
 have a description in this section are shown in this
 font.
2.1. Action Routine

Any item, be it a loose menu item or member of a
 menu sub-window, may be provided with an action routine. This
 will be called from within the Window Manager whenever a
 "hit" or "do" keystroke is made and the
 item is the current item and the item is
 not unavailable.
Within the Pointer Toolkit only pre-defined action routines are
 used, as it is not possible to call SuperBASIC routines from machine
 code.

2.2. Application Object List

The objects in a menu sub-window are grouped into one
 or more application object lists (in SuperBASIC, one list only). The list
 is arranged into rows by the sub-window's row list.
An application object list defined from SuperBASIC also contains, at
 the start, the set of item attributes which are to be used
 with the objects defined in the list.

2.3. Application Spacing List

The objects in a menu sub-window are
 arranged in a regular array of rows and columns: however, these rows and
 columns need not all be of the same height or width. A pair of spacing
 lists is required, one for the rows and one for the columns: there must be
 as many entries in the row spacing list as there are rows, and similarly
 for the columns. An entry in a spacing list defines (a) the size of the
 object itself, and (b) the spacing between the start of this object and
 the next: this should obviously be greater than the size of the object! If
 a row, say, consists of a number of objects of various heights, then the
 corresponding entry in the row spacing list should allow just enough space
 for the highest object.

2.4. Application Sub-Window

An application sub-window is an area of an application's window used
 for a particular purpose, for instance the drawing area in a drawing
 program or a file list in a file copying utility. Since the uses of such
 an area are very variable, the Window Manager requires the
 application program to provide routines to draw, read the pointer in, and
 modify such a sub-window.
A special case of an application sub-window is a menu
 sub-window, which can use some special routines provided by the
 Window Manager.

2.5. Application Sub-Window List

The application sub-window definitions used in any window will all
 take up different amounts of memory, depending on their complexity. It is
 therefore impossible to arrange them into a list in the same way as, say,
 loose menu items, which are all the same size. An application
 sub-window list of regular-sized entries is therefore used, which consists
 of a set of pointers to the sub-window definitions, followed by a pointer
 with a "silly" value (zero, in fact) which marks the end of the
 list.

2.6. Blob

A blob is a set of data somewhere in memory defining the shape of a
 graphics item, say a circle. Given a set of suitably defined
 patterns, one could use such a blob to draw red, green,
 white, brickwork, gingham etc. circles.

2.7. Bottom Window

The bottom window is special, in that it is the window that will
 become top of the pile when "CTRL C" is
 pressed.

2.8. Control Definition

A menu sub-window which is (or may be) divided into one
 or more sections requires a control definition to tell the
 Window Manager where each section starts in the sub-window,
 which is the first visible row or column in the section, and how many
 visible rows or columns there are in the section. This control definition
 will be modified by the sub-window's control routine as the
 user scrolls, pans, splits or joins the sections.

2.9. Control Routine

When the pointer is within an application sub-window
 the action to be taken when a pan/scroll bar or index
 item is "hit" depends on the application itself. Therefore an
 application must supply a control routine for each sub-window which can be
 called by the Window Manager when either of those items is
 "hit". In the case of a menu sub-window, the Window Manager
 provides a standard control routine WM.PANSC which will prove
 useful in the majority of cases.
When using the Pointer Toolkit, only pre-defined control routines
 may be used as it is not possible to call SuperBASIC routines from machine
 code. If a menu sub-window is defined then the standard WM.PANSC routine is used, otherwise the RD_PTR call which entered
 the Window Manager returns.

2.10. Draw Routine

All application sub-windows may be supplied with a draw
 routine, which is called by the Window Manager at the
 appropriate point when drawing the contents of a window for the first
 time. In the case of a menu sub-window this draw routine will
 frequently be a call to the Window Manager's own menu-drawing routine
 WM.MDRAW. Note that whether
 a draw routine is supplied or not, the Window Manager will always draw the
 sub-window's border and will clear it to the background colour, unless the
 "do not clear" flag is set. If a menu sub-window has index
 items and/or sections then a separate routine,
 WM.INDEX, must be called to
 draw the index items and/or pan/scroll bars etc..
When using the Pointer Toolkit, only pre-defined draw routines may
 be used as it is not possible to call SuperBASIC routines from the code.
 If the sub-window is a menu sub-window then the WM.MDRAW routine is used, otherwise no draw routine
 is used. If the sub-window has sections or index items these will also be
 drawn.

2.11. Hit Area

A window's hit area covers the same area as the
 outline, but excluding the shadow. If a special pointer is
 defined for use within a window, it will appear only when the pointer is
 within the hit area of that window, and the window is
 unlocked.

2.12. Hit Routine

When the pointer is within an application sub-window
 the action to be taken when the pointer is moved or a key is pressed
 depends on the application itself. Therefore an application must supply a
 hit routine for each sub-window which can be called by the Window
 Manager when either of the above events takes place. In the case of
 a menu sub-window, the Window Manager provides a standard hit
 routine WM.MHIT which will prove
 useful in the majority of cases.
When using the Pointer Toolkit, only pre-defined hit routines may be
 used as it is not possible to call SuperBASIC routines from machine code.
 If a menu sub-window is defined then the standard WM.MHIT routine is used, otherwise the RD_PTR call which entered
 the Window Manager returns.

2.13. Index Items

A menu sub-window may have index items at the top
 and/or left-hand edge to show what is in a given column or row: for
 instance a spreadsheet might use the index items to show the row numbers
 and column letters. An index item list is of the same form as an
 application object list.
Note

Well, it was a good theory I suppose. George Gwilt has traced the
 code for various index routines and discovered that they are empty of
 anything even remotely useful. In other words, they are there, but do
 nothing. Basically then, anything you read here about indexes should be
 considered as "we thought about it, but never implemented it".
 Shame.

2.14. Information Object List

An information object list defines the size, position, type and so
 on of each object that appears in an information sub-window.
 As with a loose item list, it is terminated with a special
 value: unlike loose objects, however, information items are
 fairly static and do not require item numbers or action
 routines.

2.15. Information Sub-Window List

The information that appears in a window may usefully be grouped
 into a number of information sub-windows, each with its own window
 attributes and information object list. These
 sub-windows are defined in a list of regularly spaced entries, terminated
 by a special value, called an information sub-window list.

2.16. Initial Position

When a window is positioned by the Window Manager, the
 pointer will always appear at the position specified by the window origin
 in the window definition. When the call is made to the Window
 Manager to position the window, the application may specify how the
 pointer is to be moved to achieve this: an initial pointer position of
 (-1,-1) requests that the pointer be moved as little as possible, and a
 positive pair of co-ordinates requests that the pointer be moved as near
 as possible to that absolute position. The existing or given
 position may have to be modified if the window would fall outside the
 screen or its primary with the pointer at this position: this modification
 will be as small as possible.

2.17. Item

An item consists of one or more objects, all of which
 are in the same window or menu sub-window, and have the same
 item number. A "hit" on any one of the objects comprising a
 given item will cause all the objects in that item to be re-drawn with the
 new status.

2.18. Item Attributes

An item, whether it is a loose menu item or contained
 in a menu sub-window, may have one of three
 statuses. When the item's status changes it will be re-drawn
 using a different set of item attributes, depending on its new status. For
 each of the three possible statuses, there are four attributes that may
 change: the background colour, on which the object is drawn: the text
 colour, used if there is any text in the item: the blob
 shape, used if part of the item is a pattern: and the
 pattern, used if part of the item is a blob. Thus selecting a pattern from
 a menu might change its blob from a circle to a tick, and change its
 background from white to green.

2.19. Item Number

In each loose or application object list,
 the objects are given item numbers. These item numbers
 associate one or more objects with each flag in the status
 block, so that a "hit" on one object may affect the appearance of
 more than one object, but will only directly change the status of one
 item.
Note

The Pointer Toolkit restricts you to one object per item, as item
 numbers are assigned automatically by the various MK_ routines.

2.20. Locked Window

A window is locked while there is another primary
 window which (a) is above it in the pile, and (b) overlaps
 it. Most attempts to output to or input from a locked window will wait
 until the call times out or the window becomes unlocked: the
 exception is a pointer read (RPTR) with both bits 4 and
 5 (in and out of window) set, which always returns immediately.

2.21. Loose Menu Item

It is frequently useful to have, within a window, a set of menu
 items that are permanently visible without having to pull down a
 sub-menu or pan/scroll a menu
 sub-window. Such items are often positioned in an irregular manner,
 as opposed to the regular row and column array of a menu sub-window. This
 need is catered for in the Window Manager by having a set of
 "loose" menu items which each have their own position and size, as well as
 the usual type, action routine etc.

2.22. Loose Item List

All the loose menu items in a window are defined in one
 loose item list, containing data on their size, position, type and so on.
 The end of the list is marked by an entry of a special value which cannot
 occur anywhere else - experience shows that omitting this is a frequent
 cause of "mysterious" problems!
A loose item list defined from SuperBASIC also includes the set of
 item attributes to be used with the objects defined in the
 list.

2.23. Managed Window

A window is said to be managed if its outline has been
 set by a call to OUTLN. Only if a window and
 its primary are managed will you be able to use it for
 pointer input or make use of sub-windows: there are also
 differences when size checking on an OUTLN or WINDOW call, and CLOSing the window.
The BOOT program as supplied on the QPTR master
 medium sets SuperBASIC's outline: lines 110 to 160 must be copied to your
 own BOOT program if the Pointer Toolkit is to work
 correctly.

2.24. Menu Sub-Window

A menu sub-window is a special case of an application
 sub-window, consisting of objects arranged in a
 regular array of rows and columns. Similar or related objects will
 frequently be grouped together, for instance filenames in one column, file
 lengths in the next. Depending on the application single or multiple
 objects may be selected, and pan/scroll bars may
 be required to allow the user to view all the objects in the menu. The
 objects are defined in one or more application object lists,
 grouped into rows by the row list, with spacings between
 objects defined by spacing lists.

2.25. Outline

All windows, primary or secondary, have an
 outline. The primary window's outline is either set by an explicit call to
 OUTLN, or is maintained by
 the Pointer Interface to be just big enough to enclose the primary and all
 its secondaries: the first case is that of a managed window,
 the second is said to be unmanaged.
If the outline of a primary has been set, making it managed, you
 will get an "out of range" error if you try to set any of its secondaries
 outside it, either with WINDOW or with OUTLN. If you reduce the primary's outline with a
 further call to OUTLN, any secondaries
 whose area would then fall outside the new outline are reset so that their
 outline, hit and active areas are all the same as the primary's new hit
 area (i.e. as big as possible). Since their size has (probably) changed,
 any save area they may have is discarded.

2.26. Pan/Scroll Bars

A menu sub-window may not be big enough to show all the
 objects in the menu: in this case the sub-window will usually provide pan
 and/or scroll bars to allow the user to move sideways or up and down
 through the objects respectively.

2.27. Pattern

A pattern is a set of data somewhere in memory that defines the
 colours with which a graphics item may be drawn: for instance, a brickwork
 pattern would consist of red blocks with white lines between them. Using
 suitable blobs, one could draw brickwork-coloured squares,
 triangles, circles, crescents and so on.

2.28. Pick

A window is said to be picked to the top of the pile if
 an action by the user or a program causes it to be transferred to the top.
 This transfer consists of a number of internal re-arrangements which you
 aren't very interested in (honest!), saving any primary
 that's about to be overlapped, restoring the contents of the picked window
 to the screen, and unlocking it. You can pick a window either from a
 program, using PICK, or by pointing to a
 visible bit of it with the pointer and hitting a key or mouse button, or
 typing "CTRL C". The last of these always picks the bottom
 window, the former two pick a specified window.

2.29. Pile

The set of primary windows present at any time may be
 thought of as resembling a pile of overlapping sheets of paper on a desk
 (the screen). There is a slight difference, in that two windows that do
 not overlap are always at different levels in the pile, even if they
 appear to be at the same level. A typical pile, viewed from the side (not
 possible!) might look like this:
----- <-- top window
 --- <-- unlocked, but not top
 ------- <-- locked
----------- <-- bottom window, also locked

2.30. Pointer

If the mouse (if present) is moved or a read pointer call is made, a
 pointer of some sort will appear on the screen: this may take various
 forms depending on the state of the window to which it points.

2.31. Pointer Environment

The combination of the Pointer Interface and the
 Window Manager forms the complete Pointer Environment with
 both high and low level access for the programmer.

2.32. Pointer Interface

The Pointer Interface provides an extended and modified console
 driver, and forms the lower level of the Pointer Environment.
 For the programmer it provides some extra TRAP
 #3s (D0=$6C to $7F) to allow applications to read the pointer
 and so on

2.33. Primary Window

Any job running in the QL may have a number of windows open at any
 one time: one of these, usually the first one used for I/O
 not the first one opened) is designated the job's
 primary window. This window's outline defines the area
 restored when the job is picked to the top of the
 pile. If the outline of a primary is explicitly set by
 OUTLN then the window
 becomes managed, and size checking is performed
 in a slightly different way. If the outline is not explicitly set, then
 the primary is unmanaged, and the outline can be "stretched"
 by opening new secondaries or moving existing ones.

2.34. Scan Order

While the pointer is visible the Pointer Interface
 keeps track of which window contains it by scanning the pile.
 It is worth knowing how this is done, so that you know why the pointer is
 that boring little arrow and not the super-duper sprite you just designed!
 More seriously, if the sprite isn't what you expect then it's probably
 because the window you're using to read the pointer is
 unmanaged, or because its primary is unmanaged.
 The following is a description of how the Pointer Interface decides which
 window contains the pointer, and thus which sprite to display.
FOR all primaries in current display mode, from top down
 IF pointer in this primary
 IF primary is managed
 FOR all its secondaries, in reverse order of use
 IF this secondary is managed
 IF in this secondary
 SET channel ID to secondary
 SET no sub-window
 SET secondary's pointer sprite
 FOR all sub-windows of secondary
 IF in sub-window
 SET pointer sprite
 SET sub-window number
 EXIT sub-window
 END IF
 END FOR sub-window
 EXIT to CHECK_POINTER_SPRITE
 END IF
 END IF
 END FOR secondaries
 SET channel ID to primary
 SET no sub-window
 SET primary's pointer sprite
 FOR all sub-windows of primary
 IF in sub-window
 SET pointer sprite
 SET sub-window number
 EXIT sub-window
 END IF
 END FOR sub-window
 EXIT to CHECK_POINTER_SPRITE
 ELSE
 FOR primary and all second., in reverse order of use
 IF in active area
 SET channel ID
 SET default sprite
 SET no sub-window
 EXIT to CHECK_POINTER_SPRITE
 END IF
 END FOR all windows
 SET no channel ID (-1)
 SET no sprite
 SET no sub-window
 EXIT to CHECK_POINTER_SPRITE
 END IF
 END IF
END FOR primaries
FOR all primaries in other mode
 IF in primary
 SET channel ID
 EXIT to CHECK_POINTER_SPRITE
 END IF
END FOR primaries
SET in no window

CHECK_POINTER_SPRITE:
 IF whole screen locked
 SET pointer sprite to "locked"
 ELSE
 IF window size/move/query
 SET pointer sprite to "size/move/query"
 ELSE
 IF channel in other mode
 SET pointer sprite to "other mode"
 ELSE
 IF channel busy or doing keyboard read
 SET "busy" or "keyboard"
 END IF
 END IF
 END IF
 END IF
 FOR all versions of the pointer sprite
 IF this version is OK in this mode
 EXIT to SET_POINTER_RECORD
 END IF
 END FOR versions
 SET pointer sprite to "arrow"

SET_POINTER_RECORD:
 fill in pointer, channel ID, relative co-ordinates,
 sub-window number, window definition
 clear event vector and keystroke/keypress

2.35. Secondary Window

A job may have more than one window open at once: the first used of
 these will be designated the primary window, all the rest
 will be secondaries. When a secondary's outline is set, that
 area of the screen is saved, so that when the outline is set again it may
 be restored (and the new area saved).

2.36. Sections

When a menu sub-window is too small to show all its
 objects at once, it may be found convenient to split the
 sub-window into one or more sections which can be
 pan/scrolled through the data: for instance, one would
 require two sections to look at the top and bottom of a spreadsheet
 simultaneously. The actions of panning, scrolling, splitting and joining
 the sections of a sub-window are taken care of by that sub-window's
 control routine.

2.37. Setup

The process of converting from a window definition to a
 working definition is the setup stage. In the machine code
 case it is accomplished by the Window Manager routine
 WM.SETUP. The SuperBASIC
 routines DR_PPOS and DR_PULD do a similar job on
 the definition set up by the MK_WDEF routine, and also
 call the appropriate positioning and window drawing routines.

2.38. Setup Routine

When Window Manager sets up an application
 sub-window the data structures to be generated depend on the
 application itself. Therefore an application may supply a setup routine
 for each sub-window which can be called by the Window Manager during the
 setup stage. In the case of a menu sub-window, the Window
 Manager provides a standard setup routine WM.SMENU which will prove
 useful in the majority of cases.
When using the Pointer Toolkit, only pre-defined setup routines may
 be used as it is not possible to call SuperBASIC routines from machine
 code. If a menu sub-window is defined then the standard WM.SMENU routine is used, otherwise no setup
 routine is used.

2.39. Size Checking

When a WINDOW or OUTLN call is made, the
 size required must be checked. If the window to be re-sized is
 unmanaged, then the check requires that the new size will fit
 on the screen: this is also the case when an OUTLN call is made for the primary
 window of a job. If the window to be resized is a managed
 secondary window, then it must fall within the hit area of
 its primary.

2.40. Sprite

A sprite, as used by the Pointer Interface, is a set of
 data somewhere in memory which defines both the shape and colour of a
 graphics object. Such an object may be (a) drawn within a window, or (b)
 used as a pointer: the familiar arrow, padlock, K and no-entry pointers
 are all sprites. This is somewhat different from the games programmer's
 definition of sprites, which move around of their own accord colliding
 with one another in a most unsettling manner.

2.41. Status

Any loose menu item or item in a menu
 sub-window has an associated status: this may be unavailable,
 available, or selected. This status is shown visually by changing the
 colours or shapes of the objects which comprise the item, and
 is recorded in a status block for use by the application. The
 colours and shapes used for each status are defined by the item
 attributes, each window having one set for its loose menu items (if
 any), and one set for the items in each menu sub-window.

2.42. Status Block

A window will have a status block for its loose menu
 items, and one for each of its menu sub-windows. Each
 item has a one-byte flag, which will take different values depending on
 the item's status, at a position in the block corresponding
 to the item number. In addition, the flag may have its bottom
 bit set to indicate to the Window Manager that its status has
 changed and that the object should be re-drawn. Action
 routines are usually called with a pointer to a status block and an
 item number, so that the status of the item whose action routine has been
 called may be checked or modified.

2.43. Sub-Menu

A sub-menu is very similar to an ordinary menu, but is contained in
 a secondary window that has been pulled down within its
 primary. Depending on the application a sub-menu might appear
 at a fixed point or close to the pointer. Usually sub-menus contain a set
 of associated options for which there isn't room in the main menu, or
 which would make it too cluttered. An example is the SORT sub-menu in
 QRAM.

2.44. Sub-Window

Any managed window may have a list of sub-windows
 attached to it. When a RPTR call has been made, the Pointer
 Interface will scan through the pile of
 windows and set the pointer sprite to that defined for the sub-window
 containing the pointer (if any). If the pointer read returns then the
 co-ordinates of the pointer will be relative to the sub-window, making a
 programmer's life easier, we hope! The position of a sub-window is defined
 relative to its window, so it does not need to be reset if the window is
 re-defined.
A sub-window is only of relevance when doing a pointer read, to
 change the pointer sprite seen and the sub-window number and position
 returned: you cannot print to or clear subwindows. If you wish to modify
 the area corresponding to a sub-window, you have to set a real window
 channel to that area - the Window Manager provides a routine
 to do this.
The Window Manager uses a sub-window for each
 application sub-window to determine whether the pointer is in an
 application sub-window or the main body of the window.

2.45. Timing Out

It is possible to specify how long the QL should keep trying to do
 an I/O call for before giving up and returning a "not complete" error
 message - this is called timing out. All the Pointer Toolkit routines keep
 trying indefinitely, and thus never time out, but you may find that some
 other programs (or programming languages) use finite timeouts, and
 therefore fail to do some I/O sequences correctly if they try to do them
 while their windows are locked.

2.46. Top Window

The top window in the pile is special in that it is always
 unlocked since nothing can overlap it, and it is the only
 window allowed to use the keyboard for input.

2.47. Unlocked Window

A primary window is said to be unlocked if there is no
 primary above it in the pile which overlaps it. While a
 window is unlocked all attempts to output to it will succeed: attempts to
 do keyboard input from it will succeed if it is the top
 window. If a window is not unlocked then output will appear either when
 the window becomes unlocked, or not at all if the output call times out
 before the window becomes unlocked.
In addition, an unlockable window is always unlocked,
 regardless of any overlapping windows.

2.48. Unlockable Window

A window may be made unlockable, in which case all output to it will
 appear instantly, regardless of whether there is an overlapping window or
 not: this is done by a special version of the PICK routine. This is what
 life was like before the Pointer Environment, jolly messy!

2.49. Unmanaged Window

A window is said to be managed if no OUTLN call has been made to
 set its outline: in this case it is assumed that the job
 using the window is unaware of the existence of the Pointer
 Interface, and thus the effect of some I/O calls is slightly
 changed. For instance, any subwindows are ignored during a
 pointer read. There are also some differences between unmanaged and
 managed windows when they are CLOSEd.

2.50. Unset

Once a primary or pull-down window has
 been set up and drawn, the definition will remain until the application
 removes it. The Window Manager provides a routine to do this
 which does all the operations required to make it safe to modify or remove
 the window's working definition. This routine is
 WM.UNSET.
The SuperBASIC unset routine not only calls the WM.UNSET vector, but
 converts all the absolute pointers in the data structures back into their
 relative forms.

2.51. Window Definition

A window definition is an embryonic form of a full working
 definition, which is converted into the latter by a
 setup routine, frequently with the addition of some extra
 data: for instance, a file-copying program might generate its own
 application object list from the directory of a disc.
It may be convenient for applications written in different languages
 to have different window definition formats, and to provide their own
 setup routines.

2.52. Window Manager

The Window Manager is a set of utility routines which assist with
 the maintenance of windows, and which forms the higher level of the
 Pointer Environment. A number of routines are provided which
 translate and interpret data structures either set up by or contained
 within a program. Translation involves conversion of a window
 definition of the form recognised by the Window Manager to a
 working definition. Interpretation frequently takes the form
 of drawing or re-drawing part of a window.
Since the Window Manager is able to call various
 application-supplied routines, quite complicated effects can be achieved
 without the programmer having to write all the "boring bits".

2.53. Working Definition

Whereas a window definition may take many forms, a
 working definition must always be of the same form. The first action of
 any application will usually be to translate the window definition into a
 working definition using its setup routines: subsequently the
 Window Manager will be able to work on the data structure
 produced, as it will now be in a standard form.

2.54. A Typical Window

A typical Pointer Environment window is shown below.
[image: ConceptsA typical windowA Typical Window]
1) A sprite type loose menu item, centred in the space allocated to
 it. This is the "move window" item, which should be present in most
 applications. It is "hit" by the standard key "CTRL F4" and specially
 treated within the Window Manager by generating a "move window" event.
 Other sprite type loose items are also shown - resize window (CTRL F3),
 wake/refresh (CTRL F2) and sleep (CTRL F1).
2) A number of text type loose menu items - COMMAND, VIEW, ALL, SORT
 etc. These are also centred in the allocated space. Each loose item is hit
 by the "special" key indicated in front - F3, F4, F5 etc. Not shown here
 is a HELP loose item. As there should be one of these
 present in every application, it is specially treated and hit using the F1
 key. Within the Window Manager software hitting the F1 key generates a
 "help" event.
3) Two information objects, both of them text. The medium name and
 statistics object is in a window of its own, so that it can be re-drawn
 when necessary. The pull-down window shows it's title - "Command" - in an
 information window.
4) A menu sub-window. (Everything in the area of the window with the
 black background.) The objects in this are centred vertically, but
 left-justified horizontally. There are three objects in each row - a
 filename, the file size and a space (indicating a file) or a '>'
 indicating a directory. All three have the same menu item number, and thus
 share the same state - selecting the filename, for example, selects the
 file size and directry indicator as well. In this example, all menu items
 are shown as available. menu sub-windows like this do not have a separate
 channel of their own.
5) The current item in the primary window - "Command" - which caused
 the pull-down window to be displayed. In the pull-down window "Statistics"
 is shown as selected even though it is not the current item.
6) The current item in the pull-down window: this has not yet been
 selected, so it still shows in the available colours. Because this is a
 pull-down window, it has its own status area, so there is no confusion
 between this current item and the previous one.
7) The pointer: while this remains within the border showing that
 the DO item is current, a "hit" will select that item. As the pointer is
 moved, the Window Manager removes and replaces this border around
 whichever menu item the pointer is within.
8) A pull-down window. In contrast to the sub-window, this does have
 its own channel, which is opened when the window is pulled down and closed
 when it is discarded. This is an example of a secondary window, and thus
 lies entirely within its primary.
9) Scroll arrows: when the number of files is too large for the menu
 sub-window, the application increases the number of control sections from
 none to one, and calls the Window Manager routine provided to draw these
 bars. The Window Manager also provides the routine to scroll through the
 list of files.
10) Scroll bar: this allows easy scrolling through the whole range
 of files. You may hit this and drag the thumb to scroll through the
 contents of the window in addition to scrolling using the scroll
 arrows.

Part II. SuperBASIC & the Pointer Environment

The sections in Part II present the SuperBASIC interface to the Pointer
Environment and describes the many and varied procedures and functions which
allow you to create Pointer Environment applications using only the QPTR
toolkit and SuperBASIC.

Chapter 3. SuperBASIC

3.1. Keywords

The Keywords added by the Pointer Toolkit are split into two groups.
 The first deals with those routines which use only the Pointer Interface,
 the second with the routines that also require the Window Manager.
3.1.1. Pointer Interface routines

Optional parameters are included in square brackets, thus
 [option], or curly brackets {xpos,ypos}.
Where this is of the form [#ch,] it shows that a channel number
 may be specified. If in any case it is not specified, the channel number
 defaults to #1 as usual.
Where an option occurs in square brackets that parameter may be
 specified or not as desired; where it occurs in curly brackets it may be
 specified zero, one or more times. For some optional parameters a table
 of the default values is given, with the effect the default value will
 have. If the default value is given as "none", then the procedure or
 function will do something different if the parameter is given, and
 there is no value that you can give this parameter that will have the
 same effect as omitting it. For instance, the RPIXL function just reads
 the colour of a pixel if no scan direction is given, but always scans if
 a scan direction is given, and no value of the scan direction parameter
 means "do not scan".
Separators are significant only where specified: otherwise you may
 choose any of the five possibilities (, ; ! \ TO), depending on which
 you find the most readable.
3.1.1.1. HOT_STUFF

HOT_STUFF str1$[, str2$]
	Optional Parameters	Default	Meaning
	str2$	""	Stuff only str1$

This procedure puts a string into the HOTKEY buffer: str1$ is put in the buffer first,
 immediately followed by str2$ if present. The string in the HOTKEY
 buffer may be retrieved by typing "ALT SPACE" in any job, which will
 act as if the characters of the string had been typed instead of the
 "ALT SPACE".
This facility is available only if the HOTKEY job (supplied with
 QRAM) is active.

3.1.1.2. LBLOB

LBLOB [#ch,][TO]{xpos,ypos{ TO xpos,ypos},}blob,pattern

This procedure draws one or more lines of blobs. Apart from the
 optional channel number and the required blob and pattern, the
 parameters consist of co-ordinates preceded by TO or a comma: those
 preceded by a comma set the start point for drawing, those with a TO
 draw a line of blobs to the given end point and reset the start point
 to that end point. The start point is also set by the WBLOB procedure, and is
 kept in SuperBASIC's channel table between calls, so successive
 LBLOB TO ... calls will work as
 expected.
Co-ordinates are in pixels, blobs which would fall wholly or
 partly outside the window are not drawn.

3.1.1.3. MKPAT

MKPAT addr, buffer
Converts a screen save buffer, as created with the PSAVE function, into a
 pattern. The contents of the buffer are copied to the address given in
 addr, and there must be enough memory there for that copy of the
 buffer plus a graphics object header (18 bytes). The amount of memory
 required may be determined by a call to the SPRSP function, giving a width parameter the
 same as the x-size of the buffer, and a height parameter of half the
 buffer height.
The width will be truncated to the nearest 16 pixels, so the
 saved image in the buffer must be at least 16 pixels wide.

3.1.1.4. MS_HOT

MS_HOT [#ch,]hot$
Set the string stuffed into the current keyboard queue when both
 mouse buttons are pressed simultaneously. The string hot$ may be 0, 1
 or 2 non-null characters to clear or set 1 or 2 characters to be
 stuffed. Because these characters appear in the keyboard queue before
 any further processing is done, they may be translated by the ALTKEY
 or HOTKEY processes to produce longer strings or start HOTKEY
 jobs.
You are advised to use this procedure only in BOOT files or
 utilities which invite the user to supply a mouse hotkey, e.g. system
 control panels.

3.1.1.5. MK_SPD

MS_SPD [#ch,] accel[, wakeup]
	Optional Parameters	Default	Meaning
	wakeup	None	don't change wakeup speed

This procedure modifies the response of the keyboard and mouse
 pointer movement. The accel parameter sets the acceleration of the
 mouse, making the pointer move quickly or sluggishly: it also affects
 the gradual speed increase when the pointer is driven from the
 keyboard.
The wakeup parameter applies only to the mouse, and sets the
 minimum speed that has to be reached before the (currently invisible)
 pointer appears: a high value will mean that an accidental nudge of
 the mouse while you are typing wll be less likely to cause the pointer
 to appear.
Both parameters are limited to a range of 0 to 9.
You are advised to use this procedure only in BOOT files or
 utilities which invite the user to change the mouse response, e.g.
 system control panels.

3.1.1.6. OUTLN

OUTLN [#ch,]xsize, ysize, xorg, yorg[, xshad, yshad][,
 move]
	Optional Parameters	Default	Meaning
	xshad	0	No X shadow
	yshad	0	No Y shadow
	move	0	Discard window contents on move.

The OUTLN procedure sets the
 "outline" of a window, and signals to the Pointer Interface that the
 window is "managed" - see Chapter 2, Concepts for
 explanations of these terms. Only managed windows with managed
 "primaries" may be used for pointer input: SuperBASIC's primary window
 is usually #0.
The three optional parameters default to zero, but you can
 specify the move key, the shadow widths, or both if you wish. The
 shadow will appear to the right or the bottom if xshad or yshad are
 positive. The move key will discard the current window contents if it
 is zero, or move them to the new position if it is set to 1 - you must
 keep the x and y sizes the same for this to work! If you set the
 outline of a secondary window, then the area underneath it will be
 saved, and restored when the outline is set again: this allows you to
 implement pull-down windows without having to do the saves and
 restores yourself.

3.1.1.7. PICK

result = PICK([#ch,] job-ID | key)
This function picks the primary window belonging to a given job
 to the top of the "pile" on the screen, in the same way that the user
 can pick windows with "CTRL C" or by pointing and hitting with the
 pointer. The job-ID may be specified as two numbers, <job
 number>, <tag>, or as one composite number, <tag> *
 65536 + <job number>: this is consistent with SuperToolkit II.
 Alternatively a key may be specified. If this is -1 then whichever job
 is at the bottom of the pile will be picked to the top: if it is -2,
 then the window specified will be marked "unlockable".
If the job specified doesn't have a window, or doesn't exist,
 then the result will be -2, the QDOS error code for "invalid job" -
 otherwise it will be zero, signalling success.
This function should be used with discrimination, unless you
 find it particularly amusing to have windows popping up at
 random.
1000 IF PICK(job_id) < 0 THEN PRINT "Can't pick "; job_name$

3.1.1.8. PREST

PREST [#ch,]buffer, bufxo, bufyo, xsize, ysize, winxo,
 winyo, keep
This procedure restores a block, xsize by ysize pixels, from a
 buffer into a window. If keep is set to 1 then the buffer is kept, if
 0 then it is discarded. The buffer may also be discarded by using the
 SuperToolkit II procedure RECHP.

3.1.1.9. PSAVE

result=PSAVE([#ch,]buffer, bufxo, bufyo, xsize, ysize,
 winxo, winyo [,bufxs, bufys])
	Optional Parameters	Default	Meaning
	bufxs/buftys	None	Buffer is set up, address is valid.

This function saves a block from a window into a buffer in
 memory: the block size and origin in the window are given in xsize,
 ysize, winxo and winyo, and the origin in the buffer of the block to
 be overwritten is given in bufxo and bufyo.
A new buffer is set up by specifying a buffer size in terms of
 pixels, in bufxs and bufys - in this case the result returned is the
 address of the buffer.
This function, and its complementary procedure PREST, allow the
 generation of graphics data over an area bigger than the screen of the
 QL. Note that when the buffer is set up, it is cleared to black, and
 that the only way of modifying it is with PSAVE.
100 REMark Save the top left 100x100 pixels of channel 1
110 REMark into the top left of a new 512x768 buffer.
120 :
130 buffer=PSAVE(0; 0, 0; 100, 100, 0, 0; 512, 768)
140 :
150 REMark Now draw a big circle, and save that 100
160 REMark pixels across the buffer.
170 : 180 FILL 1:CIRCLE 50, 50, 30
190 d=PSAVE(buffer; 100, 0; 250, 200, 0, 0)
200 :
210 REMark Now restore some of what we saved before,
220 REMark and some of the circle, at the bottom
230 REMark right of the window.
240 :
250 PREST buffer; 50, 50; 100, 100, 150, 100; 1

3.1.1.10. RMODE

result=RMODE
This function reads the current display mode, returning 4 for
 4-colour mode and 8 for 8-colour. This function can and should be used
 to avoid doing MODE calls to set the
 display mode to the one the QL is in already!

3.1.1.11. RPIXL

result=RPIXL([#ch,] xstart, ystart[, direction[,
 colour[, same]]])
	Optional Parameters	Default	Meaning
	direction	None	No scan.
	colour	-1	Start pixel is reference colour.
	same	0	Scan to a different colour pixel.

The simple form of this function returns the colour (0-7) of the
 pixel at xstart,ystart.
If a direction is given, the function scans horizontally or
 vertically from the start point (0=up, 1=down, 2=left, 3=right) until
 a pixel of a different colour is found, and returns the co-ordinate of
 that pixel. Since the scan is horizontal or vertical the other
 co-ordinate remains constant.
If a colour is given then the scan looks for a pixel of a
 different colour to that given: if no colour is given, or the given
 colour is specified as -1, then the colour of the start pixel is
 used.
If the same flag is given, a value of 1 scans for a pixel of the
 same colour as the reference: a value of 0 scans for a different
 colour.
If the scan reaches the edge of the window without finding a
 pixel of the required colour then the co-ordinate returned is
 -1.

3.1.1.12. RPTR

RPTR [#ch,] xabs%, yabs%, term%, swnum%, xrel%, yrel%,
 bt$ Note

The details described in this section apply to the
 RPTR call on all
 versions of the Pointer Environment prior to 2.71, on all
 platforms. See below for changes in version 2.71 and above on SMSQ
 and SMSQ/E only..

Read the pointer position in the given window, which must be
 "managed" - see Section 3.1.1.6, “OUTLN” and Chapter 2, Concepts for more details. The procedure will return
 under various circumstances, depending on the value of term%:
Table 3.1. The termination vector.
	Bit set	Returns if ...
	0	a key or button is pressed in the window. Also, request
 window resize.
	1	a key or button is pressed (subject to auto repeat).
 Also request window move.
	2	a key or button is released in the window.
	3	the pointer moves from the given co-ordinates in the
 window.
	4	the pointer moves out of the window.
	5	the pointer is inside the window.
	6	the pointer hits the window edge.
	7	Special Window Request. See below.

Bit 7 selects a special mode, in which all other jobs' windows
 are locked, and a special sprite appears depending on the values of
 bits 0 and 1:
Table 3.2. Special window request mode
	Bit set	Sprite shown
	0	Window resize pointer.
	1	Window move pointer.

Bits 2 to 6 should all be clear when bit 7 is set. The
 co-ordinates returned are always absolute, rather than relative to the
 origin of the window used to make the call.
Apart from the above "window request" mode, the co-ordinates
 returned in xrel% and yrel% will be relative to the origin of a window
 or "sub-window". If the pointer was in a sub-window then the value of
 swnum% will be 0 or greater, otherwise it will be -1. See Section 3.1.1.19, “SWDEF” to find out about sub-windows.
If a "return on move" is requested then xabs% and yabs% are used
 as the reference point - when the pointer is moved from this position
 then the call will return. These variables are normally set up at the
 start of the program, and subsequently updated only via the RPTR call.
The value of bt$ is a single character string. If a button or
 key press happened, the character will correspond to the key except
 for the following "event keystrokes":
Table 3.3. Event keystrokes
	Key	CHR$	Event
	None	0	No key pressed
	Space/Left mouse button	1	Hit
	Enter/Right mouse button	2	Do
	ESC	3	Cancel
	F1	4	Help
	CTRL F4	5	Move window
	CTRL F3	6	Change size

The values of xabs%, yabs%, term% and swnum% should be set
 before calling this procedure, as they are used to determine when the
 call will return. On return all the parameters will be set to the
 appropriate values.
Note

If you call the procedure with the wrong type of variable
 (float instead of integer, for instance) then you'll get some very
 odd results - use only integers for the first six parameters, and a
 string for the last.

As this routine returns values through the parameter list, it is
 not compatible with the Super/Turbocharge compilers.
1000 xa% = 0 : ya% = 0 : kystk = 1 : swnum% = -1
1010 OUTLN 256, 202, 256, 0; 1 : BORDER 1, 255
1020 REPeat l
1030 rt% = kystk : REMark Return when a key is hit
1040 RPTR xa%, ya%, rt%, swnum%, x%, y%, bt$
1050 PRINT #2; x%, y%, CODE(bt$)
1060 END REPeat l
1000 REMark Set up current absolute position
1010 REMark and sub-window number:
1020 REMark OUTWN + INWIN returns instantly
1030 :
1040 OUTLN 256, 202, 256, 0; 1 : BORDER 1, 255
1050 outwn = 16: inwin = 32: rt% = outwn + inwin
1060 xa% = 0: ya% = 0: swnum% = -1
1070 RPTR xa%, ya%, rt%, swnum%, x%, y%, bt$
On SMSQ and SMSQ/E only, in the Pointer Environment version 2.71
 onwards, the QPTR call has changed.
The QPTR RPTR call has been
 modified to accept job events in the most significant
 byte of the termination parameter. The job event values
 are, therefore, multiplied by 256.
Note that while all pointer events that have occurred since the
 call are returned in term%, only those job events (including pending
 events) which caused the return are returned in
 term%.
...
1060 term% = $2001: REMark RPTR returns on button or keystroke or job event $20.
1070 RPTR #ch, xabs%, yabs%, term%, swnum%, xrel%, yrel%, bt$
1080 :
1090 REMark If some other job sets event $20, RPTR will return.
1100 REMark In that case term% DIV 256 will be the job event.
1110 :
1120 IF (term% DIV 256) = 32 THEN
1130 REMark Process job event $20 here.
1140 ...
1220 END IF
...

3.1.1.13. SPTR

SPTR [#ch], xpos, ypos [,key]	Optional Parameters	Default	Meaning
	xpos	None	New pointer x position
	ypos	None	New pointer y position
	key	-1	Origin key. Zero, -1 or +1 only

Moves the pointer to a given position.
The origin key should be zero if the pointer coordinates are
 absolute. A key of -1 will set the position relative to the current
 window definition. A key of 1 will set it relative to the hit
 area.

3.1.1.14. SRSP

result=SPRSP(width, height)
This function calculates the memory space required to store the
 definition of a sprite of the given width and height, both in 4-colour
 mode pixels. This is particularly useful for loading multiple sprites
 into one piece of memory by calculating the space for each and then
 allocating it all at once: this reduces overheads and heap
 fragmentation.

3.1.1.15. SPHDR

SPHDR addr, xsize, ysize, xorg, yorg, md[, next]

SPHDR addr, next
This procedure sets up a sprite header to be filled by the
 SPLIN procedure: there must be enough room at
 the address given in addr for a sprite of the required size.
The sprite may be linked to the next one in a list, either as an
 option on the long form of the procedure, or using the short form.
 Such linked sprites may be defined for use in different modes, as
 specified by md. When used as a pointer or drawn using WBLOB or WSPRT, the list will be searched for a
 definition suitable for use in the current mode.
1000 REMark Set up a pointer for #1, shape depending
1010 REMark on mode.
1100 :
1110 REMark First the pointer that appears
1120 REMark in mode 4
1130 :
1140 spr4 = ALCHP(SPRSP(9, 9))
1150 SPHDR spr4; 9, 9, 5, 5; 4
1160 linum% = 0
1170 SPLIN spr4, linum%, ' ww '
1180 SPLIN spr4, linum%, ' waw '
1190 SPLIN spr4, linum%, ' waaw '
1200 SPLIN spr4, linum%, ' wawaw '
1210 SPLIN spr4, linum%, ' wawwawww'
1220 SPLIN spr4, linum%, 'waaaaaaaw'
1230 SPLIN spr4, linum%, 'wwwwwawww'
1240 SPLIN spr4, linum%, ' waw '
1250 SPLIN spr4, linum%, ' www '
1300 :
1310 REMark Now set up a sprite to appear in mode 8
1320 REMark and link it to the mode 4 sprite.
1330 :
1340 spr8 = ALCHP(SPRSP(20, 10))
1350 SPHDR spr8; 20, 10, 10, 5; 8; spr4
1360 linum% = 0
1370 SPLIN spr8, linum%, ' wwwwww '
1380 SPLIN spr8, linum%, ' wwaaaaww '
1390 SPLIN spr8, linum%, ' wawwwwaw '
1400 SPLIN spr8, linum%, ' wawwwwaw '
1410 SPLIN spr8, linum%, ' wwaaaaww '
1420 SPLIN spr8, linum%, 'wwawwwwaww'
1430 SPLIN spr8, linum%, 'waww wwaw'
1440 SPLIN spr8, linum%, 'wawwwwwwaw'
1450 SPLIN spr8, linum%, 'wwaaaaaaww'
1460 SPLIN spr8, linum%, ' wwwwwwww '
1500 :
1510 REMark Attach it to #1
1520 :
1530 OUTLN 256, 202, 256, 0; 1 : BORDER 1,2 55
1540 SWDEF : SWDEF -1; 252, 200, 0, 0; spr8
1600 :
1610 REMark Read the pointer: the sprite you see
1620 REMark depends on the display mode
1630 :
1640 ax% = 0: ay% = 0: swnum% = 0: rt = 1
1650 REPeat l
1660 rt% = rt
1670 RPTR ax%, ay%, rt%, swnum%, xr%, yr%, bt$
1680 END REPeat l

3.1.1.16. SPLIN

SPLIN addr, linum%, patt$
Fill in one line of pixels in a sprite. The header must have
 been set up previously using the SPHDR procedure. The line to set is given by
 linum%, with line 0 being the top: if the line number is too big you
 will get an "out of range" error. The pixel colours are specified in
 patt$, as for SPSET. If the line number parameter is a
 variable then it will be incremented after this call, so successive
 calls to SPLIN will set successive
 lines of a sprite: this feature will not work with the
 Super/Turbocharge compilers.

3.1.1.17. SPRAY

SPRAY xorg, yorg, blob, pattern, pixels

This procedure works in a similar way to WBLOB, but instead of
 writing the whole blob it writes only a few pixels from it: the number
 of pixels written is given by the pixels parameter.
These are chosen "at random" from the blob to give a spray
 effect. Somewhere between 5% and 20% of the total number of pixels in
 the blob usually gives a good result. If you spray several times with
 the same parameters the blob will gradually fill in, but there is no
 guarantee that it will ever do so completely, even if the pixels
 parameter is the same as the total number of pixels in the
 blob.

3.1.1.18. SPSET

SPSET addr, xorg, yorg, md, shape$(ysize, xsize)

This procedure sets up the data for a sprite, in a suitable form
 for a particular QL mode as specified in md. The size is given by the
 dimensions of the string array shape$ defining the sprite: for
 convenience you may pass an array slice. The sprite's origin must also
 be given in xorg,yorg.
The colour of each pixel of the sprite is specified by a
 character in the string array, the top left pixel being specified by
 shape$(0,1), the top right by shape$(0,xsize), the bottom right by
 shape$(ysize-1,xsize) and so on. Note that the rows run from 0 to n-1,
 as in other arrays, but the columns from 1 to n as for strings.
The colour characters permitted are "aurmgcyw ", standing for
 pixels that are blAck, blUe, Red,
 Magenta, Green, Cyan,
 Yellow, White and transparent (space).
100 DIM shape$(10, 10): RESTORE 180
110 READ xsize, ysize, xorg, yorg, md
120 FOR i = 0 TO ysize - 1: READ shape$(i)
130 addr = ALCHP(SPRSP(xsize, ysize))
140 SPSET addr, xorg, yorg, md, shape$(0 TO ysize - 1, 1 TO xsize)
150 REMark Concentric rings with a hole in the centre
160 DATA 7, 7, 3, 3, 4
170 DATA ' www '
180 DATA ' wgggw '
190 DATA 'wgrrrgw'
200 DATA 'wgr rgw'
210 DATA 'wgrrrgw'
220 DATA ' wgggw '
230 DATA ' www '

3.1.1.19. SWDEF

SWDEF [#ch,][swnum[, xsize, ysize, xorg, yorg[,
 sprite]]]	Optional Parameters	Default	Meaning
	xshad	0	No X shadow
	yshad	0	No Y shadow
	move	0	Discard window contents on move.

This procedure sets or clears a sub-window definition. If no
 parameter is given then the sub-window list for the window is removed
 entirely: if just the sub-window number swnum is given, then that
 sub-window definition is removed: and if a definition is given, then
 that sub-window is (re-)defined. Optionally the address of a sprite
 definition, sprite, may be appended, in which case the pointer will
 change to that sprite when it is within the sub-window.
The origin given is relative to the "hit area" of the window,
 which must be "managed". The sub-window definition for the main part
 of the window may be set by specifying a sub-window number of -1: the
 origin in this case is absolute. Removing the sub-window definition of
 the main part of the window will reset the sprite to the default, and
 the area to the hit area.
Note

If you wish to use N sub-windows, you must specify all
 sub-windows from 0 through N-1, and in addition the window's primary
 must be managed (must have had its outline set with OUTLN). Sub-windows
 are checked starting at sub-window 0, up to the first unset one, and
 then the main part. To avoid fragmenting the heap more than is
 necessary, you are advised to define the highest numbered sub-window
 first.

100 REMark Remove all current definitions, and put
110 REMark one sub-window across the top of #1, and one
120 REMark down the side with a special "hand" sprite.
130 :
140 SWDEF
150 SWDEF 1; 250, 20, 0, 0
160 SWDEF 0; 40, 100, 0, 21; hand

3.1.1.20. WBLOB

WBLOB [#ch,] x, y, blob, pattern
This procedure writes the blob into the given channel, using the
 pattern, at the given co-ordinates x,y. These co-ordinates are also
 used to update the default start point for the LBLOB procedure. The
 blob specifies the shape of what appears, the pattern the colour, so
 you would need one blob and three patterns to draw red, yellow and
 blue flowers. In this version the blob is not drawn if it overlaps the
 edge of the window, or falls outside it. The blob and pattern are
 pointers to items of the appropriate sort - probably loaded into the
 heap with an ALCHP followed by an LBYTES, or set up from
 SuperBASIC by calls to SPSET, SPHDR or SPLIN. In early
 versions of the Pointer Interface no check is made on the blob and
 pattern, and the blob drawing routine can be crashed quite easily by
 duff data: you have been warned!
Note

Any sprite may be used as a blob, and any sprite whose width
 is a multiple of 16 may be used as a pattern.

3.1.1.21. WSPRT

WSPRT [#ch,] x, y, sprite
This procedure is very similar to WBLOB, except that the
 sprite data structure defines both shape and colour information, so
 you would need three complete sprite definitions to draw red, yellow
 and blue flowers - but they could all be different shapes. The same
 comments apply with regard to drawing outside the window and using
 valid sprite definitions.
A feature of versions 1.13 onward of the Pointer Interface is
 that the built-in sprite definitions may be written if a small integer
 is specified rather than an address:
Table 3.4. Special window request mode
	Value of sprite	Sprite shown
	0	Pointer arrow
	1	Lock
	2	Window request
	3	4 or 8
	4	Keyboard
	5	No entry
	6	Window move
	7	Window resize

3.1.1.22. WREST

WREST [#ch]
This procedure restores the saved area of the given window. The
 save area is lost. This procedure should be used only when the window
 size has not changed.

3.1.2. Window Manager routines

The following SuperBASIC routines form an interface to the Window
 Manager. They are in four groups, definition routines, drawing routines,
 access routines and change routine.
The majority of these routines make use of arrays to pass long
 parameter lists to them with the minimum of typing: unfortunately
 routines which use array parameters are not compatible with the
 Super/Turbocharge compilers, and you will be unable to compile programs
 which use them with these compilers.
The amount of stack used by the Window Manager on some calls is
 greater than that permitted for machine code SuperBASIC procedures or
 functions: this has not caused us any problems with the interpreter, but
 has resulted in crashes with program compiled with Q_Liberator, versions
 up to 3.12. Versions from 3.21 onwards allow more stack, and do not
 suffer from this problem. If you have Q_Liberator v.312 or earlier then
 compiled programs may be used if processed with the STKINC utility: See
 Chapter 6, Utilities for more details.
3.1.2.1. Definition routines

These set up parts of a window working definition, given parts
 of the window definition in one or more arrays. Each is a function
 which returns the address of the data structure set up: these
 addresses are then used as parameters in further calls to the Window
 Manager routines.
3.1.2.1.1. MK_LIL

lilst = MK_LIL(attr(3,3), size%(n,1), org%(n,1),
 jus%(n,1), sk$, type%(n), strg$(p,m), pspr(q), pblb(r),
 ppat(s))
Make a loose item list, complete with attributes.
There are n+1 items in the list. Each item has its own size,
 origin and justification in the appropriate arrays, the x-attribute
 being in arr%(i,0) and the y in arr%(i,1). The justification
 specifies whether the object is to be left/top justified (positive
 values), right/bottom justified (negative values) or centred (zero).
 Non-zero values give the distance in pixels from the appropriate
 edge of the area defined by the size and origin of the item.
The type% array specifies not only the type of each item in
 the bottom byte of each word, but also the action to be taken on
 "hitting" each item: if the top byte is zero, then no further action
 is taken, if non_zero then the RD_PTR call returns:
 if +1, the item's status is reset to available before returning, if
 -1 no change is made to the status. To set the top byte to +1 or -1,
 add +256 or -256 to the item type. The value of the bottom byte may
 be 0, 2, 4 or 6 for string, sprite, blob or pattern items: up to p+1
 elements of type% may have a bottom byte of 0, q+1 of 2, and so on.
 When an element specifies that an object should be of a given type,
 then the next object is taken from the appropriate array. Thus if
 type% contains the values 0, 2, 2, 4, 2 and 6 the objects will come
 from strg$(0), pspr(0), pspr (1), pblb(0), pspr(2) and
 ppat(0).
If an item is null (a zero length string or zero pointer) then
 it is assumed that the item is absent: such items may be reset later
 with the CH_ITEM
 procedure.
Note

It is possible to put an underscore under a selection key
 for text loose menu items and text info items. To do this, specify
 the type to be text minus twice the underscore position. This
 means, to underscore the first character, give 0-2 (=-2), to
 underscore the fifth position give -10 etc.

3.1.2.1.2. MK_IOL

iolst = MK_IOL(size%(n, 1), org%(n, 1), imod(n),
 type%(n), strg$(p, m), pspr(q), pblb(r), ppat(s))
Make an information object list. size%, org%, type% and the
 object arrays are the same as for a loose item list. There are no
 justification or select key arrays, and the top byte of type% is
 ignored. Objects are taken in turn from the strg$, pspr, pblb and
 ppat arrays, depending on the contents of type%, as for the
 MK_LIL
 function.
If an information object is a piece of text, or a blob or
 pattern, additional information is required to draw it: in the case
 of text, you need to specify how big it is and what colour: a blob
 needs to be drawn using a pattern: and a pattern needs to drawn
 using a blob. The imod array specifies this additional information:
 if item N is a blob or pattern then imod(N) contains a pointer to a
 pattern or blob to combine with it. If item N is text then the
 colour and size are combined using the magic formula
<ink> * 65536 + <csize_x> * 256 +
 <csize_y>
So a large red piece of text would have an attribute of 2 *
 65536 + 3 * 256 + 1, or 131841.
Note

It is possible to put an underscore under a selection key
 for text loose menu items and text info items. To do this, specify
 the type to be text minus twice the underscore position. This
 means, to underscore the first character, give 0-2 (=-2), to
 underscore the fifth position give -10 etc.

3.1.2.1.3. MK_AOLST

aolst = MK_AOLST(iattr(3, 3), jus%(n, 1), sk$,
 type%(n), strg$(p, m), pspr(q), pblb(r), ppat(s))
Make an application sub-window object list. Very similar to a
 loose menu item list, except that there are no size or origin
 attributes. If the bottom byte of type(0) is odd then the list is
 assumed to be of index items, and the item number is set to $FFFF
 and the action routine to 0. In this case the attributes specified
 are those to be used for the index items (see below).
Note

George Gwilt has traced the code for indexes and
 discovered that the code does nothing. To this effect, indexes can
 be assumed as not implemented.

3.1.2.1.4. MK_CDEF

cdef = MK_CDEF(maxsed%, arrc%, barc%, secc%)

Make a control definition list: this specifies the maximum
 number of sections into which the sub-window can be split, and the
 colours for the arrows (arrc%), bars (barc%) and bar sections
 (secc%). After this area is reserved enough space for a section
 control block with up to maxsec% sections.

3.1.2.1.5. MK_ASL

aslst = MK_ASL(size%(n, 1) [,isiz%, ispc%])

Make an application sub-window spacing list. size%(i, 0) gives
 the hit size, size%(i, 1) the spacing. The sizes and spacings for
 the index bars may also be set. Two spacing lists are required for
 each sub-window, one for each axis.

3.1.2.1.6. MK_RWL

rwlst = MK_RWL(aolst, se%(n, 1))
Make an application sub-window row list. There are n nows, the
 i'th starting with item se%(i, 0) and ending just before item se%(i,
 1). The object list is at aolst, as returned by a call to the
 MK_AOL function.

3.1.2.1.7. MK_APPW

apw(n) = MK_APPW(wdef%(3), wattr%(3), ptr, sk$,
 [x_cdef, y_cdef, x_off%, y_off%, x_aslst, y_aslst, x_aolst, y_aolst,
 rwlst])
Make an application sub-window definition. If a menu
 sub-window is required, all parameters must be given, although the
 pointers to the control definitions and index list definitions
 (x_cdef, y_cdef, x_aolst, and y_aolst) may be zero: the spacing list
 and row-list pointers (x_aslst, y_aslst and rwlst) are required. The
 pointer and select key (ptr and sk$) may be zero and the null string
 if these are not required. The number of items in a spacing list,
 index item list and row/column must be consistent.
As a special case a sub-window may be defined with only the
 first four parameters, in which case a special hit routine is used
 which results in a RD_PTR call returning
 every time the pointer is moved or a key is hit in that
 sub-window.

3.1.2.1.8. MK_IWL

iwlst = MK_IWL(wdef%(n, 3), wattr%(n, 3), iolst(n))

Make an information sub-window list. Each information
 sub-window has a size and position in wdef%(i), attributes given by
 wattr%(i): the pointer to the object list in iolst(i) should be the
 result of a call to the MK_IOL
 function.

3.1.2.1.9. MK_AWL

awlst = MK_AWL(apw(n))
Make an application sub-window list. The array of pointers, to
 sub-window definitions generated by the MK_APPW function, is
 copied and terminated with a long word of zero.

3.1.2.1.10. MK_WDEF

wdef = MK_WDEF(wdef%(3), wattr%(3), ptr, lilst,
 iwlst, awlst)
Make a complete window definition. Any of the last four
 pointers may be zero. If non-zero, ptr should point to a sprite
 definition to be used as the pointer in the window, while lilst,
 iwlst and awlst are the results of calls to the MK_LIL, MK_IWL and MK_AWL functions.
The window position specified in the wdef% array parameter is
 not the absolute position at which the window
 will be drawn, but the initial position of the pointer within the
 window when it is drawn.

3.1.2.2. Drawing Routines

These procedures set up and draw a window from definitions
 generated by the definition functions above, and allow an application
 to re-draw part of a window. Routines are also provided to position a
 given window channel "over" part of a window, so that embellishments
 may be added and so forth. This is particularly useful in the case of
 pull-down windows, whose channels are inaccessible to the SuperBASIC
 program.
The wdef parameters required by all these routines is the result
 of a call to the MK_WDEF
 function.
3.1.2.2.1. DR_PPOS

DR_PPOS [#ch,] wdef, xpos%, ypos%[, lflag%(n)] {,
 aflag%(p, q) [, ctx%(maxsec%, 2)] [, cty%(maxsec%, 2)]}

Position a primary window, or ...

3.1.2.2.2. DR_PULLD

DR_PULD wdef, xpos%, ypos%[, lflag%(n)] {, aflag%(p,
 q)[, ctx%(maxsec%, 2)][, cty%(maxsec%, 2)]}
... pull down a window. After a window has been positioned or
 pulled down then it is drawn. A flag array is passed for the loose
 items (lflag%) and a flag array (aflag%) and zero, one or two
 control definition arrays (ctx% and cty%) for each menu sub-window,
 and the items drawn with the given statuses. The channel for a
 pull-down window is opened, a primary window's channel must already
 be open.
When the window appears, the pointer will always be set to the
 initial pointer position within the window as specified when the
 window definition was set up. If the positioning parameters xpos%
 and ypos% are set to -1, then the pointer will be moved as little as
 possible (often no distance) to accomplish this. If, however, xpos%
 and ypos% are set to some other value, then the pointer will be set
 as close to that absolute position as possible before the window is
 pulled down.
Note

A window is always positioned so that its X origin is a
 multiple of two: this ensures that any stipples used in the window
 remain "in phase" at all times.

3.1.2.2.3. DR_LDRW

DR_LDRW wdef, lflag%(n)
The flag array lflag%(n) is copied into the loose items status
 block, and the loose items are then re-drawn. If no change bit is
 set in any flag, then all items are re-drawn, otherwise only changed
 items are re-drawn.

3.1.2.2.4. DR_ADRW

DR_ADRW wdef, aswnum%, aflag%(p, q) [,ctx%(maxsec%,
 2)][, cty%(maxsec%, 2)]
The flag array aflag% is copied into the status block of the
 application sub-window referred to by the aswnum% parameter, the
 control definition arrays ctx% and cty% (if any) copied into the
 control block, and the menu sub-window is re-drawn, using the same
 rules as for loose menu items. If element (0, 1) of a control
 definition is non-zero, then the whole sub-window is re-drawn,
 regardless of the item status changes.

3.1.2.2.5. DR_IDRW

DR_IDRW wdef, infwm
This procedure re-draws any of the first 32 information
 sub-windows in the window given by wdef. The infwm is interpreted as
 a bit map of the windows to be re-drawn, with a clear bit
 corresponding to a window to be re-drawn. Thus a value of
 -2=$FFFFFFFE will re-draw information sub-window 0 only,
 -6=$FFFFFFFA will re-draw windows 0 and 2, and so on.

3.1.2.2.6. DR_AWDF

DR_AWDF [#ch,] wdef, swnum%
Set a channel to cover the same screen area as the given
 application sub-window.

3.1.2.2.7. DR_IWDF

DR_IWDF [#ch,] wdef, iwnum%
Set a channel to cover the same screen area as the given
 information sub-window.

3.1.2.2.8. DR_LWDF

DR_LWDF [#ch,] wdef, item%
Set a channel to cover the same screen area as the given loose
 item.

3.1.2.2.9. DR_UNST

DR_UNST wdef
Unset a window definition. A window that was pulled down is
 removed and its channel closed.

3.1.2.3. Access routines

3.1.2.3.1. RD_PTR

RD_PTR wdef, item%, swnum%, event%, xrel%, yrel% [,
 lflag%]{, aflag%[, ctx%][, cty%]}
Read the pointer via the Window Manager: the call returns when
 a window event occurs, or a return item is "hit". In addition to the
 returned parameters, the item statuses are copied back into the
 appropriate arrays. The item number and sub-window number of the
 last item hit are returned in item% and swnum%, and the event
 causing the return in event%: this may be 128 for a hit on an item
 causing an automatic return, or one of the following values, caused
 by an "event generating" keystroke:
Table 3.5. RD_PTR Event Keystrokes
	Event Name	Keystroke Causing Event	Value in event%
	Do	Enter	1
	Cancel	ESC	2
	Help	F1	4
	Move	CTRL F4	8
	Resize	CTRL F3	16
	Sleep	CTRL F1	32
	Wake	CTRL F2	64

The flag and control arrays are copied into the relevant
 status areas on entry. If any of the statuses have changed
 (signalled by odd flag values), the changed items only are re-drawn:
 if a control definition has changed, then the whole of that menu is
 re-drawn. This frequently avoids the need for explicit re-draw
 calls.
The returned pointer co-ordinates xrel% and yrel% are relative
 to the top left corner of the sub-window.
If the pointer is in an application sub-window which is not a
 menu sub-window, then the call will return whenever a key is pressed
 or the pointer is moved. Since such a sub-window has no items in it,
 the keystroke and keypress are returned in the high and low byte of
 item%. Note that moving the pointer via the cursor keys produces
 keystrokes, whereas moving it with a mouse does not.

3.1.2.4. Change routines

3.1.2.4.1. CH_ITEM

CH_ITEM wdef, swnum%, item%, type%, selkey$, value

Change the given item in the given sub-window to the new
 value, type and select key, given in value, type% and selkey$. The
 type of the value may be string or floating point, depending on the
 type of the item. Special values are:
	swnum% -1 for loose item, -n for information item in
 information window n-2 (n>1): thus -2 to alter information
 window 0, -3 to alter window 1 etc.

	type% -1 for no change.

	selkey$ "" for no change (ignored in information window):
 chr$(0) for no select key

3.1.2.4.2. CH_PTR

CH_PTR wdef, swnum%, newptr
Change the pointer sprite for a sub-window. If the sub-window
 number given in swnum% is -1 then the main window's sprite is
 re-defined. If the address of the pointer sprite, given in newptr,
 is zero then the default sprite is used. This is the same as the
 main window's sprite for a sub-window, and is the arrow sprite for
 the main window.

3.1.2.4.3. CH_WIN

CH_WIN wdef[, xdsiz%, ydsiz%]
Change a window's size or position. If only the wdef parameter
 is given then the window's position is changed, otherwise the size
 change required is returned in xdsiz% and ydsiz%. Since the window's
 layout will probably change fairly drastically when the size
 changes, it is up to the programmer to decide the effect of the
 result returned. Note that changing the position of a primary window
 does not change the positions of its secondaries: any sub-windows of
 the moved window do move with it, as their positions are defined
 relative to it.
As for the initial positioning of a window, the X origin will
 always be a multiple of four, and the Y origin a multiple of two, to
 keep stipples "in phase".

3.1.3. Array parameters

Some forms of array parameters are used in many of the above
 routines: their dimension and contents are defined below.
3.1.3.1. Window Attributes Array

wattr%(3)
Table 3.6. Window Attributes Array
	Element	Data
	0	Shadow depth
	1	Border width
	2	Border colour
	3	Paper colour

3.1.3.2. Item Attributes Array

iattr(3,3)
Table 3.7. Item Attributes Array
	Element	Data
	0, 0	Current item border width
	0, 1	Current item border colour
	0, 2	Spare - unused, best set to zero
	0, 3	Spare - unused, best set to zero
	1, 0	Unavailable item background colour
	1, 1	Unavailable item ink colour
	1, 2	Unavailable item pointer to blob
	1, 3	Unavailable item pointer to pattern
	2, 0 to 2, 3	As above but for available item
	3, 0 to 3, 3	As above but for selected item

Note

only the current/unavailable attributes are used for index
 items, but that the available and selected attributes must still be
 set. If a separate attribute array is used for index items, rows 2
 and 3 may be left as 0.

3.1.3.3. Window Size/Position Definition Array

wdef%(3)
Table 3.8. Window Size/Position Definition Array
	Element	Data
	0	Window X size
	1	Windows Y size
	2	Windows X origin (Initial pointer position, when used
 in main window def.)
	3	Windows Y origin (Initial pointer position, when used
 in main window def.)

3.1.3.4. Loose And Menu Item Flag Array

lflag%(n) and aflag%(n,m)
The flag arrays determine the status of each item in a window:
 if an item's status is changed by the program, a re-draw may be
 requested by adding 1 to the required status. The re-draw will take
 place either when specifically requested by a call to one of the
 re-draw routines, or automatically on a call to RD_PTR.
Table 3.9. Loose & Menu Item Flag Array
	Flag value	Item Status
	0	Available
	16	Unavailable
	128	Selected

3.1.3.5. Control Definition Array

cta%(maxsc%, 2)
Table 3.10. Control Definition Array
	Element	Data
	0, 0	Current number of control sections
	0, 1	<> 0 if the control definition is changed
	i, 0	Start pixel position
	i, 1	Start column/row
	i, 2	Number of columns/rows

3.2. Index of keywords

The keywords are summarised in alphabetical order, together with an
 indication of what action they perform. Those marked PTR require the Pointer Interface, WMAN need the Window Manager in addition: unmarked
 ones are independent of either. Those marked P are procedures, F are functions: an A signifies that the routine uses array parameters,
 and an R that it returns results through
 its parameter list. Having either of the latter properties makes a program
 using the routine uncompilable with the Super/Turbocharge
 compilers.
CH_ITEM WMAN P Change a menu item
CH_PTR WMAN P Change a menu or sub-window's pointer sprite
CH_WIN WMAN PR Change a window's position or size
DR_ADRW WMAN P A Re-draw an application sub-window
DR_AWDF WMAN P Put window over application sub-window
DR_IDRW WMAN P A Re-draw an information sub-window
DR_IWDF WMAN P Put window over information sub-window
DR_LDRW WMAN P A Re-draw loose menu item(s)
DR_LWDF WMAN P Put window over loose item
DR_PPOS WMAN P A Position and draw a primary window
DR_PULD WMAN P A Position and draw a pull-down window
DR_UNST WMAN P Unset and remove a window
HOT_STUFF P Put string(s) into the hotkey buffer
LBLOB PTR P Draw line(s) of blobs
MKPAT P Turn a part-window save area into a pattern
MK_AOL F A Make an application sub-window object list
MK_APPW F A Make an application sub-window definition
MK_ASL F A Make an application sub-window spacing list
MK_AWL F A Make a list of application sub-windows
MK_CDEF F Make a control definition
MK_IOL F A Make an information object list
MK_IWL F A Make an information window list
MK_LIL F A Make a loose item list
MK_RWL F A Make an application sub-window row list
MK_WDEF F A Make a window definition
MS_HOT PTR P Set mouse-hotkey string
MS_SPD PTR P Set mouse speed parameters
OUTLN PTR P Set a window's outline and shadow
PICK PTR F Pick/unlock a job
PREST PTR P Part window restore from buffer
PSAVE PTR F Part window save to buffer
RD_PTR WMAN PRA Read pointer via window manager
RMODE F Read current display mode
RPIXL PTR F Read/scan for pixel colour
RPTR PTR PR Read pointer directly
SPHDR P Set up sprite header
SPLIN PR Set up one line of sprite
SPRAY PTR P Spray pixels
SPRSP F Calculate space required for a sprite
SPSET PTR P A Set up sprite definition from array
SPTR PTR P Set pointer to new position
SWDEF PTR P (Re)set sub-window definition/pointer sprite
WBLOB PTR P Write a blob
WSPRT PTR P Write a sprite

Part III. Assembly Language & the Pointer Environment

The sections in Part III present the Assembly Language interface to the Pointer
Environment and describes the many and varied traps and vectors which
allow you to create Pointer Environment applications in assembly.

Chapter 4. Assembler

4.1. Programmer's Interface

4.1.1. Pointer Interface

The base level of the Pointer Interface is accessed
 through extended IOSS trap #3 operations. These traps are used in the
 same way as ordinary QDOS IO calls, but there are some distinctive
 characteristics.
Where an x,y coordinate pair is required, this is passed as a long
 word with the x coordinate in the upper word, and the y coordinate in
 the lower word.
In place of the single window area used by normal console output
 calls (set by SD.WDEF) the Pointer
 Interface recognises four different window areas. The largest is the
 window outline: this is the total area occupied by a window. The second
 largest is the window hit area: this is the window outline less the
 window's shadow. These two areas are set by the pointer trap IOP.OUTL. The outline (of
 a secondary window) is used by the save and restore traps (IOP.WSAV and IOP.WRST). The outline
 and hit areas of the primary windows are use by the buried layers of the
 Pointer Interface to determine which windows are locked by other windows
 which are on top.
Within the hit area there is the window area set by SD.WDEF. This is the area
 within which all output will be put: this area will often be fairly
 dynamic.
Also within the hit area there are all the sub-windows. The
 sub-window area definitions are in a list which is set by the pointer
 trap IOP.SWDF. This sub-window
 list holds not only definitions of the sub-window areas, but, for each
 area, a pointer to the sprite to be used as a pointer when the pointer
 is in that area. The only pointer trap which uses the sub-window
 definitions is IOP.RPTR (read pointer).
 If the pointer is within a sub-window of the window, then the pointer
 coordinates in the pointer record are set relative to that
 sub-window.
As the sub-window definition list is held outside the IO
 sub-system, it is important that the list be detached from the window
 channel before the memory holding the list is returned to QDOS. This
 will not be a problem if the window channel is closed first or both are
 returned by the job being removed from the machine.
Before using any of the Pointer Interface calls, it is as well to
 check whether the Pointer Interface is installed, and locate the Window
 Manager routines.
The Pointer Interface provides facilities for pointer control,
 pointer access and window control as well as some additional IO calls to
 access the area under the pointer. Some IO calls to windows which
 overlap the area occupied by the pointer will cause the pointer to be
 removed from the screen before the call is executed. When this occurs
 the pointer will be restored about a fifth of a second after the last
 standard IO call to the screen. The pointer will, however, appear as
 soon as a pointer position is requested. Where possible, the screen
 operations will be carried out without blanking the pointer.
You will find a set of symbols defined in QDOS_IO for use with
 these TRAPs.
Additional IO calls:
Name D0 Function
IOP.FLIM $6c Find window limits
IOP.SVPW $6d Partial window save
IOP.RSPW $6e Partial window restore
IOP.SLNK $6f Set linkage block
IOP.PINF $70 Information enquiry
IOP.RPTR $71 Read pointer
IOP.RPXL $72 Read pixel at x,y
IOP.WBLB $73 Write blob at x,y
IOP.LBLB $74 Write line of blobs
IOP.WSPT $76 Write sprite at x,y
IOP.SPRY $77 Spray pixels in blob
IOP.OUTL $7a Set window outline
IOP.SPTR $7b Set pointer position
IOP.PICK $7c Pick window
IOP.SWDF $7d Set window definition pointer
IOP.WSAV $7e Save window area
IOP.WRST $7f Restore window area

4.1.1.1. IOP.FLIM Find Window Limits

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	Not used	D1	Preserved
	D2	0	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to result area	A1	Preserved
	A2+	Not used	A2+	Preserved

	Error Returns
	ICHN Channel not open
	IPAR D2 <> 0

This call finds the limits of where a window's outline may be
 set by a call to IOP.OUTL - setting the
 outline outside this will give an "out of range" error, setting it
 within this area will not, unless the window's primary is moved after
 the call to IOP.FLIM. A1 points to a four-word area of
 memory into which the limits are returned in the usual X-size, Y-size,
 X-origin, Y-origin format. These are absolute coordinates. A primary
 is limited to the whole screen area, a secondary to its primary's
 outline.

4.1.1.2. IOP.SVPW Save Part Window

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	x,y start of block in area	D1	Address of save area
	D2	0 or x,y size of save area	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Size/start of window block	A1	Preserved
	A2	Address of save area (D2=0)	A2	Preserved
	A3+	Not used	A3+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG Block is not in window or save area
	IMEM No room to set up save area (D2=0 only)

This routine saves part of the contents of a window into a save
 area in memory. The size and position of the block to be saved are
 passed in a 4-word definition block pointed to by A1 (c.f. IOP.FLIM). The pixel
 position in the save area to which the block should be saved is passed
 in D1. If D2<>0 then a new save area is set up, whose size in
 pixels is given in D2: otherwise the area pointed to by A2 is used.
 The routine allows the use of bit images larger than the 512x256 limit
 imposed by the QL's hardware.

4.1.1.3. IOP.RSPW Restore Part Window

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	x,y start of block in area	D1	Preserved
	D2	<> 0 to keep save area	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Size/start of window block	A1	Preserved
	A2	Address of save area	A2	Preserved
	A3+	Not used	A3+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG Block is not in window or save area

This routine restores part of a save area into a block in a
 window. Optionally the save area may be returned to the common heap.
 This routine complements the IOP.SVPW
 routine.

4.1.1.4. IOP.SLNK Set Bytes in Linkage Block

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.W	Position in linkage to set	D1	Preserved
	D2.W	Number of bytes to set	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to data to set	A1	Address of linkage block
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open

4.1.1.5. IOP.PINF Get Pointer Information

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	Not used	D1.L	Pointer Environment version (ASCII - n.nn)
	D2	Not used	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Not used	A1	Window manager (WMAN) vector
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open
	IPAR No pointer interface installed

The version number is a four byte ASCII string e.g. '1.15'. The
 Window Manager vector contains the entry points for the upper level
 routines. For example, to call the routine at vector address $08 the
 following code may be used:
 MOVEQ #$70,D0 find entry point vector
 MOVEQ #-1,D3
 MOVE.L CHAN_ID(A5),A0 set our own channel ID
 TRAP #3
 TST.L D0 is there an interface?
 BNE OOPS ... no
 MOVE.L A1,D0 is there a Window Manager?
 BEQ OOPS ... no
 JSR $08(A1) call vectored routine $0

4.1.1.6. IOP.RPTR Read Pointer

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x, y pointer coordinates	D1.L	x, y pointer coordinates
	D2.B	Termination vector	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to pointer record	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open

The coordinates passed (in D1.L) to the trap are used to check
 whether the pointer has moved since the last call. Both the call and
 return parameters are in screen, not
 window, coordinates.
The termination vector is used to determine which events will
 cause a "complete" return from the call, and it corresponds to the
 least significant byte of the event vector (See Section 1.4.7, “Event Vector”) in the pointer record - see
 below:
Note

Note that while all pointer events that
 have occurred since the call are filled into pt_pevnt in the pointer
 record, only those job events (including pending events) which
 caused the return are filled into pt_jevnt.

	Bit set	Description
	0	Key or button stroke in window / window resize
	1	Key or button pressed (subject to auto repeat)
	2	Key or button up in window
	3	Pointer moved from given coordinates in window
	4	Pointer out of window
	5	Pointer in window
	6	Reserved until 2.71. On SMSQ and SMSQ/E only, under
 version 2.71 onwards, set this bit to return when the pointer
 hits the edge of the screen.
	7	Window request

If both bit 4 and bit 5 are set, then the pointer call will
 always return immediately, even if the window is locked!
Bit 7 is used to request a pointer "hit" regardless of whether
 the pointer is inside or outside the window. This call
 must be made with infinite timeout. While such a
 request is pending in the top window, all windows are locked and only
 the top window will get the "hit". The pointer sprite will be set
 according to the status of bits 0 and 1. If bit 7 is set then all bits
 other than bits 0 and 1 should be zero. If bit 0 is set then the move
 window sprite will be used; if bit 1 is set then the window change
 size sprite is used; otherwise the empty window sprite will be
 used.
The pointer record is 24 bytes long:
 00 long ID of window enclosing the pointer
 04 word Sub-window enclosing pointer (or -1)
 06 word X pixel coordinate of pointer within (sub-)window
 08 word Y pixel coordinate of pointer within (sub-)window
 0a byte Zero = no keystroke else key or button code
 0b byte Zero = no key down else space or button depressed
 0c long Event vector all zero except LS Byte
 10 4 words (Sub-)window definition (size, origin)
To determine the window that a pointer is in, the Pointer
 Interface scans the pile of primary windows looking for the first
 window whose hit area the pointer is in. If that window has a window
 definition list and the pointer is outside the main window definition
 (i.e. it is pointing to the border) then the pointer is considered to
 be outside all windows. If the window does not have a definition list
 and the pointer is outside the current window area (set by SD.WDEF), then the
 pointer is also considered to be outside all windows.
If the pointer is not in a window, the conventional ID -1 is
 returned instead of an actual ID (note that as a negative "tag" is
 possible, the second word of the ID should be checked to find out if
 the channel number is negative). In this case, the pointer coordinates
 will be relative to the display origin.
If the pointer is within a sub-window of the window (as defined
 by a IOP.SWDF call) then the
 x, y coordinates in the pointer record will be relative to the origin
 of sub-window. Otherwise, the sub-window number will be -1 and the x,y
 coordinates will be relative to the main window. If there is no window
 definition list, then the x, y coordinates in the pointer record will
 be relative to the origin of the current window definition. In either
 case, the definition of the window or sub-window is put into the end
 of the pointer record.
For a button on a pointer device the code is the button number.
 For a keypress on the keyboard, the code is the extended ASCII code of
 the character.

4.1.1.7. IOP.RPXL Read Pixel Colour

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y coordinates	D1.L	New position | colour
	D2.L	Scan key | scan colour	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Not used	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG x, y is not in window

key bit meaning
31 set => scan required
19 set => scan until same colour: else scan to different
18/17 00=scan up, 01=scan down, 10=scan left, 11=scan right
16 set => compare with given colour, else with start colour
The x,y coordinates are relative to the current window area set
 by SD.WDEF. If no scan is required (D2..31=0)
 then the colour of the specified pixel is returned in D1.w. If a scan
 is required then it may proceed from the given start pixel
 co-ordinates in one of four possible directions, terminating when a
 pixel of the same/a different colour to the given colour/colour of the
 pixel at the start position is found. If the scan reaches the edge of
 the window before a pixel of the required colour is found then the
 co-ordinate returned in the high word of D1 is set to -1. Since the
 scan is in either the x or the y direction, the y or x co-ordinate of
 the termination pixel is the same as that of the start pixel.

4.1.1.8. IOP.WBLB Write a Blob

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y coordinate	D1	Preserved
	D2	0	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to blob definition	A1	Preserved
	A2	Pointer to pattern definition	A2	Preserved
	A3+	Not used	A3+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG x, y is not in window
	IPAR Bad data structure

4.1.1.9. IOP.LBLB Write a Line of Blobs

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y start coordinate	D1.L	x,y end coordinate
	D2.L	x,y end coordinate	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to blob definition	A1	Preserved
	A2	Pointer to pattern definition	A2	Preserved
	A3+	Not used	A3+	All preserved

	Error Returns
	ICHN Channel not open
	IPAR Bad data structure

The write blob call writes a blob of the pattern into the
 window, and the line of blobs a line from the start to (but not
 including) the end coordinates, which are relative to the current
 window area set by SD.WDEF. A blob which
 falls wholly or partially out of the window causes an error in
 IOP.WBLB, and is
 ignored in IOP.LBLB.
This version checks the form of the blob and pattern against the
 current screen mode, and searches along each chain until it finds a
 definition with the appropriate form. If it encounters the end of the
 chain or an odd pointer before this, a "bad parameter" error will be
 returned.

4.1.1.10. IOP.WSPT Write a Sprite

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y coordinate	D1.L	Preserved
	D2	Not used	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to sprite definition or internal sprite number
 (see below)	A1	Preserved
	A2+	Not used	A2+	Preserved

	Error Returns
	ICHN Channel not open
	ORNG x, y is not in window
	IPAR Bad data structure

The write sprite call writes a sprite into the window. This
 version of the Pointer Interface cannot handle sprites which partially
 overlap the edge of the window.
The x,y coordinates are relative to the current window area set
 by vSD.WDEFSD.WDEF.
This version checks the form of the sprite against the current
 screen mode, and searches along the chain until it finds a definition
 with the appropriate form. If it encounters the end of the chain or an
 odd pointer before this, a "bad parameter" error will be
 returned.
The internal sprites may be used by passing a small number in
 A1, rather than a pointer:
 Name Number Sprite
 SP.ARROW $00 arrow
 SP.LOCK $01 padlock
 SP.NULL $02 empty window
 SP.MODE $03 wrong mode (4 or 8)
 SP.KEY $04 keyboard entry
 SP.BUSY $05 no entry sign
 SP.WMOVE $06 window move
 SP.WSIZE $07 window change size

4.1.1.11. IOP.SPRY Spray Pixels in Blob

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y coordinate	D1	x,y coordinate
	D2	Number of pixels to spray	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to blob definition	A1	Preserved
	A2	Pointer to pattern definition	A2	Preserved
	A3+	Not used	A3+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG x, y is not in window

This call sprays the number of pixels required into a window:
 the colour of each is determined by the pattern, and each falls on a
 non-transparent part of the blob. If the number of pixels required
 exceeds the number of pixels in the blob the call will terminate with
 no error, and m a y duplicate the effect of a call to IOP.WBLB: but there is
 no guarantee that one or more calls to IOP.SPRY with the same
 blob in the same position will eventually fill in the entire
 blob.

4.1.1.12. IOP.OUTL Set Window Outline

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y shadow widths	D1	Undefined
	D2	1 to keep contents, zero otherwise	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to window definition block	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG Window is not within screen

This call defines a window's outline, its hit area and shadow.
 A1 points to a normal window definition block (4 words: x,y sizes, x,y
 origin) which defines the window hit area. The shadow widths area
 added to this to make the window outline, and the shadows are drawn.
 It is the use of this call which indicates to the Pointer Interface
 that the window concerned is a genuine managed window. All subsequent
 SD.WDEF calls to this
 window will be checked against the window hit area instead of the
 total display area.
For secondary windows, IOP.OUTL also saves the
 area beneath the window, avoiding the need for explicit IOP.WSAV and IOP.WRST calls.
If the key in D2 is set to 1 then the contents of the window
 will be preserved, allowing applications to move a window with one
 call to IOP.OUTL: note that the
 size must stay the same for this to work properly!

4.1.1.13. IOP.SPTR Set Pointer Position

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	x,y coordinate	D1	x,y coordinate
	D2.B	Origin key: -1, 0 or 1 only. See below.	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1+	Not used	A1+	All preserved

	Error Returns
	ICHN Channel not open
	ORNG x, y is not in window

This call sets the current pointer position. It should be used
 with discretion as sudden pointer position changes could prove to be
 very unpleasant for the user.
The origin key should be zero if the pointer coordinates in D1
 are absolute. D1 is always set to absolute coordinates on return. A
 key of -1 will set the position relative to the current window
 definition. A key of 1 will set it relative to the hit area.

4.1.1.14. IOP.PICK Pick Window

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	Job ID or key	D1	Undefined
	D2	Zero or k.wake	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1+	Not used	A1+	All preserved

	Error Returns
	ICHN Channel not open
	IJOB Invalid job ID

If a job ID is given, the primary window owned by that job will
 be "picked" to the top of the pile. If the key is given as -1, then
 the bottommost job will be picked to the top. If the key is given as
 -2, the window is marked "unlockable". If D2 is set to k.wake, a wake
 event is sent after the pick.
This call will work even if the channel given is locked: it
 should be used very sparingly, if at all.

4.1.1.15. IOP.SWDF Set Sub-Window Definition List

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	Not used	D1	Preserved
	D2	Not used	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Points to a long word pointer to a table of pointers to
 sub-window definitions or zero (see below)	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open

This call is used to set the pointer to the sub window
 definition list. This is a sub-set of the window working definition.
 A1 points to a long word pointer to a table of pointers to sub-window
 definitions. This pointer may be zero. It is followed by a sub-window
 record for the main part of the window. The pointers to sub-window
 definitions are long words, the list is terminated by a zero long
 word. Each pointer points to a sub-window record.
A sub-window record specifies the area and, if desired, a
 pointer to a sprite to be used as pointer when the pointer is in that
 sub-window. The structure of a sub-window record is as follows:
 sw_xsize $00 word (sub-)window x size (width) in pixels
 sw_ysize $02 word (sub-)window y size (height) in pixels
 sw_xorg $04 word x origin of (sub-)window
 sw_yorg $06 word y origin of (sub-)window
 sw_wattr $08 (sub-)window attributes in 4 words - spare,
 border width, border colour, paper colour
 sw_psprt $10 long pointer to pointer sprite for this (sub-)window

4.1.1.16. IOP.WSAV Window Area Save

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1.L	Length of save area or zero	D1	Preserved
	D2	Not used	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Address of save area if D1 > zero	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open
	IMEM Out of memory

This routine saves bit images from a window's hit area. The
 memory to be used may be supplied by the application (D1 or A1
 non-zero) or allocated internally. The former option is preferable, as
 the internal save area pointer may already be in use; it is used to
 implement pull-down windows, for instance.

4.1.1.17. IOP.WRST Window Area Restore

	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D1	Not used	D1	Preserved
	D2.B	Zero to deallocate save area, else keep save
 area	D2	Preserved
	D3.W	Timeout	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Address of save area or zero	A1	Preserved
	A2+	Not used	A2+	All preserved

	Error Returns
	ICHN Channel not open
	IMEM Out of memory

This routine restores bit image back to a window's hit area. The
 memory to be used may be supplied by the application (D1 or A1
 non-zero) or allocated internally. The former option is preferable, as
 the internal save area pointer may already be in use; it is used to
 implement pull-down windows, for instance.

4.1.2. Window Manager

The window management routines are supplied to do all of the most
 common operations in handling pull-down movable and resizable windows
 and menus within these windows. The actions of the window management
 routines are controlled by data structures supplied by the
 application.
Symbols for the vectors are defined in the
 WMAN_KEYS file, which may be INCLUDEd in any
 program which makes use of these routines.
In many cases, the window data structures will have pointers to
 application supplied action routines. This effectively means that the
 application code calls the window manager routines, which, in turn, call
 application routines. To simplify the application code, the window
 manager routines treat certain registers in a uniform way:
When the window manager routines call an
 application routine, A2 is set to point to the window manager vector,
 while A5 and A6 are not used or modified by any window manager routines.
 Thus A5 and A6 can be used by the application routines as pointers to
 internal data structures.
There are four distinct phases involved in setting up and using a
 managed window:
	First the window definition is copied and expanded into the
 working definition.

	Next the working definition is used to open an appropriate
 window.

	Then the window contents are filled in.

	Finally, the window is accessed via a call to read the
 pointer.

Before starting to set up a window, the application must have
 initialised the window status area. This is a work area which is
 accessed by both the window management routines and the application
 program. It contains such useful information as the current item, the
 panning and scrolling state of the application sub-windows and the
 status of all the items within all the (sub-)windows.
The start of the status area holds pointers to the window
 definitions. Often the initial state of the rest of the status area will
 be mostly zero. Where pull-down windows are used, the status area will
 usually be maintained from one use of the window to the next time the
 window is set up to be used.
4.1.2.1. Setup routines

The routine WM.SETUP may be called
 to transfer a window definition to the
 window working definition. It is possible for an
 application to set up its own working definition, but it is easier to
 use the window manager routine.
Note

There is much confusion over the terms window
 definition and window working
 definition (or working definition). The former is what
 the developer types into his source code, and is created in a
 standard format as described elsewhere in this document. The latter
 is what WM_SETUP creates and is used internally by
 WMAN but is also accessible by the
 application code. [ND]

The window definition is a fixed skeleton of the appearance of
 the window, as in practice the window contents are liable to change.
 This variability is catered for in two ways. Firstly, the application
 must supply its own routine to transfer the definition of each
 application sub-window: for standard format menus, the application
 sub-window setup routine will just be a call to WM.SMENU. Secondly, after the working
 definition has been set up, it may be modified by the application. In
 particular, if there is a menu within the window which has a variable
 object list, then the object lists should be set up by the application
 code after the main part of the working definition has been set up by
 WM.SETUP.
Depending on the size of window required, one of a number of
 layouts will be selected from the list provided in the window
 definition. The WM.FSIZE routine may be used to determine
 which will be selected: the result of this might, for instance, be
 used to allocate the correct amount of memory for the working
 definition.
In the next phase the window is initialised. For the primary
 window, the routine WM.PRPOS will position
 and set up a primary window. For secondary windows, the routine
 WM.PULLD should be
 called to pull down a window within the primary window area. These
 routines will try to position the window so that the pointer will
 point to the current item in the window without being moved. If this
 is not possible, then the pointer itself will be moved. WM.PRPOS and WM.PULLD both set the
 window border and clear the window. After the window has been
 initialised, fancy borders or other adornments may be added by the
 application.
The window should now be filled in. Most of the operations to
 fill in the window will be performed by the routine WM.WDRAW. However, the
 application sub-windows are initialised but not filled in. This is
 left to the application code. If the sub-window is a standard format
 menu, then the menu drawing routine WM.MDRAW may be called
 to fill in the sub-window.
In the final phase, the routine WM.RPTR may be called
 to read the pointer. This routine will return with the event vector in
 D2. This will indicate what actions (if any) are required to be done.
 Any "hits" on loose menu items or items within a menu sub-window will
 have been processed within the window management level by the hit and
 action routines supplied by the application.
If a "hit" on a loose menu item, or a sub-window menu item,
 requires the window to be changed (moved, squashed, stretched, thrown
 away etc.), then the action routine should set the appropriate bit in
 the event vector and return to the application code. This ensures that
 the application will always have control over its own windows.
4.1.2.1.1. WM.FSIZE Find Size of Layout

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y size or zero	D1.L	Actual x, y size
	D2	Not used	D2.W	Layout number (zero based)
	D3+	Not used	D3+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Not used	A1	Preserved
	A2	Not used	A2	Preserved
	A3	Pointer to window definition	A3	Preserved
	A4	Not used	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Not set.

If this routine is required it will usually be called before
 WM.SETUP to determine
 which of the possible layouts WM.SETUP will select from the repeated part
 of the window definition. If the required size is given as 0 then
 the default size will be used. The actual size that the window will
 be is returned in D1: this will be the same as that passed if the
 layout selected is scaleable, otherwise it will be smaller in one or
 both dimensions. It will be larger if the size requested was smaller
 than the smallest possible layout.
The layout number is returned in D2: this will be zero for the
 first layout, 1 for the second and so on. This may be used to
 allocate the correct amount of memory for the working definition
 (the following code assumes you have set the size required and
 pointer to the window definition):
 JSR WM.FSIZE(A2) find out which layout
 ADD.W D2,D2
 ADD.W D2,D2 turn into offset
 MOVE.L WWTAB(PC,D2.W),D1 find space in table
 JSR MEMGET(PC) and allocate it
 ...
WWTAB
 DC.L WWA.MENU space for layout 0...
 DC.L WWB.MENU ...and layout 1
Note

Of course, the above code snippet assumes that you have used
 the various assembler macros supplied with the QPTR toolkit to
 define your window structures. If you have used your own methods,
 then you are, as they say, on your own!

4.1.2.1.2. WM.SETUP Setup a Managed Window

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y size or zero or -1	D1.L	x, y size
	D2+	Not used	D2+	All preserved
	A0	Window channel ID	A0	Preserved
	A1	Pointer to status area	A1	Preserved
	A2	Not used	A2	Preserved
	A3	Pointer to window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	None - always returns ok

The managed window setup routine WM.SETUP is called to transfer information
 from the window definition to the window working definition. It is
 the responsibility of the applications code to provide an area of
 memory large enough to accommodate the window working definition.
 This may seem unfair, but only the application will be able to
 determine the maximum space required in this area.
If the window size is given as 0, then the default window size
 will be used. If the window size is given as -1, then the window
 size and position in the working definition will not be changed.
 This is to allow re-use of a window (see Section 4.1.2.2.3, “WM.UNSET Window Unset”
 and Section 4.1.2.2.4, “WM.WRSET Window Reset”).
The window size is used to determine the window layout and
 scaling factors. If no definition can be found that is small enough
 to accommodate the given window size, than the size of the window in
 the last definition in the list will be used.
Where possible, WM.SETUP will set up
 complete structures. If there are empty pointers or structures in
 the window definition, these will be transferred to the working
 definition as empty pointers or structures. When it comes to
 transferring the definitions of application sub-windows to the
 working data structure, the basic sub-window definition is
 transferred, and then an application supplied routine is called to
 setup the rest of the sub-window working definition.
To simplify calls back into the window manager routines, A2
 will be set to point to the window manager vector, while A5 and A6
 remain unused since the call to WM.SETUP.
In the case of a standard menu, the application supplied
 routine will just be a branch to the standard menu setup
 routine
 JMP WM.SMENU(A2) setup standard menu
Vector $04 WM.SETUP Set Up Working Definition
 set pointer to window status area in working definition
 set pointer to window definition in window status area
 set no current item in window status area
 set window mode in status area
 set channel ID in working definition
 set pointer to pointer record
 find definition to suit size
 set x,y scaling factors
 set window attributes block
 set pointer to pointer sprite
 set loose menu item attributes block
 set help pointer
 set pointer to information sub-window list
 for all information sub-windows
 set true size and origin
 set window attributes
 set pointer to information object list
 set number of information sub-windows
 for all information sub-windows
 set end of list
 for all information objects
 set object size and position
 set object type and attributes
 set object pointer
 set number of information objects
 set end of list
 set pointer to loose menu item list
 for all loose menu items
 set object size and position
 set object justification rule
 set object type and selection keystroke
 set pointer to object and item number
 set pointer to action routine
 set number of loose menu items
 set end of loose menu item list
 set application sub-window list address
 set sub-window sprite list address to same
 for all application sub-windows
 set application sub-window pointer list (implicit end=0)
 set number of application sub-windows
 for all application sub-windows
 set true size and origin
 set window attributes
 set pointer to pointer sprite
 set pointers to sub-window draw and hit routines
 set pointer to sub-window control routine
 set selection keystroke
 for x and y
 set maximum number of sections
 if non-zero
 set pointers to part-window control blocks
 copy all control attributes
 else
 preset control section of menu definition to 0
 call application sub-window setup routine
The call parameters to the application sub-window setup
 routine are the same as the parameters to the standard menu setup
 routine. The registers A3 and A4 are used as running pointers to the
 window definition, and the working definition respectively. On
 calling the application sub-window setup routine A3 points after the
 application sub-window basic definition, or after the sub-window
 control definition (if present). A4 points to the next unset
 location in the window working definition. On exit from the
 application sub-menu setup, A4 should be updated to point to the
 next unset location in the window working definition. A3 need not be
 updated or preserved.
The window scaling parameters D1 and D2 are the amount by
 which the window size exceeds the minimum in the x and y directions.
 These are words.
	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	X scaling	D1.L	Preserved
	D2.W	Y scaling	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Undefined
	A1	Pointer to status area	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Updated
	A5	Not used by any routine	A5	Can be used as required by the user's routine
	A6	Not used by any routine	A6	Can be used as required by the user's routine

	Error
 Returns
	None - always returns ok

A1 contains the pointer to the status area which was passed to
 WM.SETUP. To simplify calls back into the
 window manager routines, A2 is set to point to the window manager
 vector, while A5 and A6 remain unused since the call to WM.SETUP. All of A0
 to A3 may be treated as volatile.

4.1.2.1.3. WM.SMENU Setup Standard Sub-window Menu

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	X scaling	D1	Preserved
	D2.W	Y scaling	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Preserved
	A1	Pointer to status area	A1	Preserved
	A2	Not used	A2	Preserved
	A3	Pointer to sub-window menu definition	A3	Updated - points to byte after menu
 definition
	A4	Running pointer to window working definition	A4	Updated - points to next unset working definition
 location
	A5	Not used by any routine	A5	Can be used as required by the user's routine
	A6	Not used by any routine	A6	Can be used as required by the user's routine

	Error
 Returns
	None - always returns ok

Vector $08 WM.SMENU Set Up a Standard Menu Sub-Window
 set pointer to menu status block
 set item attributes
 set number of rows and columns
 set pointers to spacing lists
 copy spacing lists
 set pointers to index object lists
 set index object lists
 set pointer to row list
 set row pointers
 set object lists

4.1.2.2. Window Manager Set Window Routines

The primary window position routine WM.PRPOS is called to position the primary
 window for an application. The position of the window is determined by
 the current pointer position in conjunction with the "origin" of the
 window (specified in the working definition) or the position of the
 current menu item (specified in the window status area). This ensures
 that the pointer will move as little as possible when the window is
 opened, while keeping the window within the limits of the display. A
 window is always positioned such that its X origin is a multiple of
 four, and its Y origin is a multiple of two: this ensures that any
 stipples used in the window are always "in phase".
The routine WM.PULLD is the
 equivalent call for a secondary window. This has the same effect as
 the primary open call, but the window pulled down is limited to be
 within the primary window area.
The routine WM.UNSET is called to
 unset the sub-window definition pointer in the screen driver so that a
 working definition may be removed or replaced.
The routine WM.WRSET is called to reset a primary or pull
 down window so that the same window may be used with a new working
 definition. N.B. See also Section 4.1.2.2.3, “WM.UNSET Window Unset”.
4.1.2.2.1. WM.PRPOS Primary Window Positioning

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Window origin, or -1	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If an "origin" position is given, this (in absolute screen
 coordinates) is used, in place of the current pointer position, to
 position the window.
Vector $0C WM.PRPOS Position a primary window
 get window channel ID from working definition
 find current pointer position and save it
 calculate window origin
 set window outline and shadow (saves pull down window area)
 adjust pointer position
 adjust window definition block to exclude border
 ... then WM.WRSET

4.1.2.2.2. WM.PULLD Pull Down Window Open

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Window origin, or -1	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If an "origin" position is given, this (in absolute screen
 coordinates) is used, in place of the current pointer position, to
 position the window.
Vector $10 WM.PULLD Pull Down a Window
 open console and fill in its channel ID
 set "pulled down" flag
 ... then WM.PRPOS

4.1.2.2.3. WM.UNSET Window Unset

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Window origin, or -1	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If an "origin" position is given, this (in absolute screen
 coordinates) is used, in place of the current pointer position, to
 position the window.
Vector $14 WM.UNSET
 unset sub-window definition pointer
 if window was pulled down
 restore area covered up
 restore old pointer position

4.1.2.2.4. WM.WRSET Window Reset

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Window origin, or -1	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If an "origin" position is given, this (in absolute screen
 coordinates) is used, in place of the current pointer position, to
 position the window.
Vector $18 WM.WRSET
 draw border and clear window
 set sub-window definition pointer

4.1.2.3. Drawing routines

When the working definition has been set up and the window
 opened, the general purpose routine WM.WDRAW is called to
 draw the entire window contents. The information windows are set up
 and the information objects are drawn. Then the loose menu items are
 drawn. Finally each application sub-window is set up, bordered and
 cleared and the application sub-window draw routine is called to fill
 in the contents and the index bars.
4.1.2.3.1. WM.WDRAW Draw Window Contents

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1+	Not used	D1+	All Preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

Vector $1C WM.WDRAW Draw Window Contents
 for all information sub-windows
 set sub-window size, position and border
 set sub-window background
 clear sub-window
 for each object
 draw in position

 for all menu items
 draw in position

 for all application sub-windows
 set sub-window size, position and border
 set sub-window background
 clear sub-window
 call application sub-window draw routine
The application sub-window draw routine is called to draw the
 contents and, if required, the indices for the sub-window. When it
 is called, the window definition (SD.WDEF) will have
 been set to the sub-window outline. The application routine is
 passed the pointer to the start of the working definition in A4, and
 the pointer to the sub-window definition in A3. The sub-window
 definition in the window status area will be set and D7 holds the
 origin of the window, not the sub-window . The
 pointer to the window status area can be found in the working
 definition which is pointed to by A4.
	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1-D6	Not used	D1-D6	All Preserved
	D7.L	x, y origin of window	D7	Preserved
	A0	Channel ID of window	A0	Preserved
	A1	Not used	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	D0 and the status register must be set on
 return

To simplify calls back into the window manager routines, A2 is
 set to point to the window manager vector, while A5 and A6 remain
 unused since the call to WM.WDRAW.

4.1.2.4. Part Drawing routines

There are four window management routines to help drawing or
 redrawing parts of windows. These routines may be called from the
 application sub-window drawing routines (called from WM.WDRAW) or from the
 action or control routines (called from WM.RPTR and WM.MHIT).
These are the standard menu drawing routine, WM.MDRAW, the index
 drawing routine, WM.INDEX, the
 sub-window definition routine, WM.SWDEF, and the loose
 menu item drawing routine, WM.LDRAW.
4.1.2.4.1. WM.MDRAW Standard Menu Drawing

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1-D2	Not used	D1-D2	All Preserved
	D3.B	Zero = redraw all, -1 = redraw selectively	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If D3 is set to -1 for the call to WM.MDRAW, then only
 those items whose status has the change bit set (WSI..CHG) will be
 drawn. Note that the status flags are not modified by this routine;
 this is because an item may consist of more than on object, or an
 object may be visible in more than one section, so the status flags
 need to be preserved throughout the routine. The application will
 therefore need to clear any change bits that are set after this
 routine has been called.
Vector $20 WM.MDRAW - Draw Standard Menu in Sub-Window

 set sub-window definition
 for all row sections
 for all rows visible within section
 for all column sections
 for all columns visible within section
 if draw all or WSI..CHG set in status
 draw object in colours appropriate to status

4.1.2.4.2. WM.INDEX Standard Sub-Window Index

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1+	Not used	D1+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

Vector $24 WM.INDEX - Draw Sub-Window Indices

 set main window definition
 if column index
 for all column sections
 for all columns visible in section
 draw column index object
 if row index
 for all row sections
 for all rows visible in section
 draw row index object

 if pannable
 for all column sections
 draw pan bar

 if scrollable
 for all row sections
 draw scroll bar

 set sub-window definition
 if pannable
 for all column sections
 for all row sections
 draw pan arrows
 if scrollable
 for all row sections
 for all column sections
 draw scroll arrows
Note

This is not implemented in WMAN yet, George Gwilt has traced the code and found that it
 does nothing.

4.1.2.4.3. WM.UPBAR - Update pan/scroll bars

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D0	x, y section to update	D0	Preserved
	D1+	Not used	D1+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

This routine allows re-drawing of a given section scroll or
 pan-bar. If you set D0 to -1, nothing is updated. The first call to
 draw bars and arrows should be WM.INDEX, any further
 update of the bar positions should be done with WM.UPBAR. This saves
 a lot of time as only the part which (possibly) has been modified is
 re-drawn. There is also no need to re-draw the arrows (if they
 exists) after a scroll or pan operation.

4.1.2.4.4. WM.SWDEF - Set Sub-Window Definition

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1+	Not used	D1+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

This routine may be used to reset the definition of any
 application or information sub-window.
Vector $28 WM.SWDEF - Set Sub-Window Definition

 find sub-window definition
 make absolute screen coordinates
 set window definition with zero border width

4.1.2.4.5. WM.LDRAW - Loose Menu Item Drawing

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1-D2	Not used	D1-D2	All Preserved
	D3.B	Zero = redraw all, -1 = redraw selectively	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A3	Not used	A1-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

If D3 is set to -1 for the call to WM.LDRAW, then only those items whose status
 has the change bit set (WSI..CHG) will be drawn. This routine is
 normally used when a change in status of one loose item affects the
 status of others, or when a loose item's object has been
 changed.
WM.LDRAW clears the change
 bit in the status area of every item which is selectively
 redrawn.
Note

In older versions of the Pointer Environment, the status
 flags were not modified by this routine; this
 is because an item may consist of more than one object, or an
 object may be visible in more than one section, so the status
 flags need to be preserved throughout the routine.
Applications using these older versions will therefore need
 to clear any change bits that are set after this routine has been
 called.

Vector $2C WM.LDRAW - Draw Loose Menu Items

 set main-window definition
 for all loose menu items
 if draw all or WSI..CHG set in status
 draw object in colours appropriate to status

4.1.2.4.6. WM.IDRAW - Draw information sub-windows

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1-D2	Not used	D1-D2	All Preserved
	D3.L	Clear a bit to redraw that information
 sub-window	D3	Preserved
	D4+	Not used	D4+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

This routine allows an application to re-draw any of the first
 32 information sub-windows: if bit N of D3 is clear then information
 sub-window N will be cleared and re-drawn. This routine will
 normally only be used when the information objects in a window have
 been changed.
Vector $3C WM.IDRAW - Draw information sub-windows

 for information sub-window 0..31
 if bit N clear in D3
 set sub-window definition
 draw sub-window border
 clear sub-window
 for all objects in sub-window
 draw object

4.1.2.5. Part Setting routines

There is a set of four vectors used to set the window to an area
 used by an information sub-window, loose menu item, application
 sub-window or section of application sub-window. In each case D1
 specifies the number of the entity (not to be confused with a menu
 item number) and D2 specifies the colour(s). If D2 is a negative long
 word, then only the window area will be set, otherwise these routines
 will set the ink, paper and strip colours and the "over" state to 0 as
 well as setting the area.
4.1.2.5.1. WM.SWINF - Set window to info window

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	Information sub-window number	D1	Preserved
	D2.L	Ink colour / no reset (see above)	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Channel ID of window
	A1	Not used	A1	Pointer to information sub-window in working
 definition
	A2-A3	Not used	A2-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors
	ORNG Info window number out of range

4.1.2.5.2. WM.SWLIT - Set window to loose item

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	Loose item number	D1	Preserved
	D2.L	Item status / no reset (see above)	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Channel ID of window
	A1	Not used	A1	Pointer to window in working definition
	A2-A3	Not used	A2-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors
	ORNG Info window number out of range

4.1.2.5.3. WM.SWAPP - Set window to application
 sub-window

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	Application sub-window number	D1	Preserved
	D2.L	Ink colour / no reset (see above)	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Channel ID of window
	A1	Not used	A1	Pointer to window in working definition
	A2-A3	Not used	A2-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors
	ORNG Info window number out of range

4.1.2.5.4. WM.SWSEC - Set window to application sub-window
 section

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y section numbers	D1	Preserved
	D2.L	Ink colour / no reset (see above) or -1	D2	Preserved
	D3+	Not used	D3+	All preserved
	A0	Not used	A0	Channel ID of window
	A1	Not used	A1	Pointer to window in working definition
	A2-A3	Not used	A2-A3	All preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors
	ORNG Info window number out of range

Note

The above states that D1.L should be set to a section of the
 application window. It has been discovered that in SMSQ/E v 3.13,
 at least, D1 is ignored and the window is set
 to the whole application window excluding any
 scroll bars. [GG]

If D2.L is set to -1, only the size and origin of the window
 are altered. Otherwise the ink is set to the value in D2.B, the
 paper and strip is set to that in the working definition and the
 OVER state to 0.

4.1.2.5.5. WM.DRBDR - Draw border around current item

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1+	Not used	D1+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to window status area	A1	Preserved
	A2-A4	Not used	A2-A4	All preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors

This routine draws a border using the current item information
 in the window status area.
To clear the current item, set the most significant bit of
 WS_CITEM and, if WS_CIACT is clear, call WM.DRBDR, otherwise
 call the routine pointed to by WS_CIACT and then clear
 WS_CIACT.
To set a current item, set WS_CITEM, WS_CIBRW, WS_CIPAP (to
 the highlight colour) and the hit area WS_CIHIT. Then call
 WM.DRBDR. Finally
 reset WS_CIPAP to the background colour.

4.1.2.6. Window Manager Access routines

Once the window, and all its sub-windows, have been set up, the
 pointer may be read using the window read pointer vector. This routine
 repeatedly reads the pointer, waiting for a move or keystroke event,
 and calls any hit or action routines that may be required. If any bits
 in the window or sub-window bytes of the event vector become set, then
 the routine will return. Other window manager access routines are
 available to handle menus within sub-windows and to provide utility
 support for application sub-windows.

4.1.2.7. Window Manager Read Pointer

The window manager read pointer routine (WM.RPTR) handles all
 the pointer movement and keystrokes outside the sub-windows. It also
 does some occasional operations within sub-windows, and traps some
 keystrokes before they reach the application sub-window hit
 routines.
The rules governing the operation of WM.RPTR are rather
 complex, but are designed to make the interface operate as close to an
 intuitive model as is reasonable. The operation is complex because the
 interface has to be capable of handling not only menu selection by
 keystroke and menu selection by pointing device, but also menu
 selection by cursor key and arbitrary pointer input.
The three most important keystrokes are SPACE, which corresponds
 to a click on the left mouse button, ENTER which corresponds to a
 click on the right mouse button and ESC. SPACE or left click is
 referred to as "hit", ENTER or right click is "do". For some reason,
 ESC is known as "cancel".

4.1.2.8. Current Item

One of the functions of WM.RPTR (and its menu
 support routine WM.MHIT) is to maintain
 a current menu item. This item is outlined on the display. As long as
 the pointer remains within the "hit area" of the item, the item will
 remain outlined. As soon as the pointer moves out of the hit area,
 then the outline will be removed. If the current item is "hit", then,
 if it is available, the status is toggled, and the appropriate action
 routine called. "do" is similar to "hit" except that if the item is
 available the status is set to selected before the action routine is
 called.
Alternatively, items can be selected on a single keystroke. This
 has the effect of moving the pointer to a new current item, and then
 causing a "hit". Since the "hit" will cause a call to an action
 routine, it is possible for the application to automatically convert
 the "hit" to a "do" (or a "cancel" or any other event).
From the point of view of WM.RPTR, the main
 window is divided into two distinct areas: that part of the window
 which falls within an application sub-window, and that part not within
 any application sub-window. Every window is considered to have at
 least some menu operations. Some of these, e.g. HELP or DO, may be
 accessible from any application sub-window.

4.1.2.9. Keystroke Selection

Most keystrokes on the keyboard are treated as shorthand menu
 selections. The keystroke is converted to upper case, and it is
 compared against the selection keystrokes defined for the loose menu
 items, the selection keystrokes defined for the application
 sub-windows or, in WM.MHIT, the selection
 keystrokes defined for the sub-window menu items.
The current version of the Window Manager allows you to
 underscore the character which is the selection keystroke of a text
 item. The type of this item is text-position, which means, first
 character is -1, second -2 and so on.
There are some keystrokes which are defined to cause window
 events:
	ENTER or a double click will cause a "do" event;

	ESC will cause a "cancel" event;

	F1 will cause HELP event;

	CTRL F4 will cause a MOVE window event;

	CTRL F3 will cause a change SIZE event;

	CTRL F2 will cause a WAKE event;

	CTRL F1 will cause a SLEEP event.

The treatment of these keystrokes will depend on both the
 organisation of the window, and the position of the pointer.
The WM.RPTR routine is a
 loop reading the pointer record. Whenever there is a move or keystroke
 to be processed, it checks first of all for the event keystrokes, then
 other keystrokes, and if there is no keystroke, it checks whether the
 current item has changed. When appropriate, it calls either a loose
 menu item action routine, or a application sub-window hit routine. If,
 at the end of all the processing of a keystroke or move an event has
 been generated, WM.RPTR will return.
 Otherwise it will continue to read the pointer record.
If there is a "do" event and there is a current item, then the
 corresponding item is selected and the appropriate action routine is
 called.
If there is an event keystroke other than "do" or there is a
 "do" with no current item, then the loose items are searched for a
 corresponding selection key. If one is found, the loose menu item
 status is toggled and the action routine called. If no corresponding
 selection key is found, then, unless it is a "do" or a "cancel" within
 an application sub-window, the appropriate bit will be set in the
 event vector and the routine will return.
If there is a "do" or a "cancel" within an application
 sub-window and there is no "do" or "cancel" loose menu item, then the
 application sub-window hit routine will be called.
If there is not an event keystroke, a check is make to see if
 the pointer has moved outside the current item hit area. If it has,
 the current item is cleared (set negative) and the border
 redrawn.
Next, if there is a keystroke, the loose menu item list will be
 searched for a corresponding selection keystroke. If one is found, the
 item status will be toggled and then the appropriate action routine
 will be called.
If the keystroke is not found in the loose menu item list then
 all (except the current) application sub-windows are searched for a
 corresponding selection keystroke. If one is found, the pointer is
 moved to the centre of the application sub-window and the sub-window
 hit routine is called.
If there is no keystroke, or the keystroke is not the selection
 keystroke for a loose menu item or an application sub-window, then, if
 the pointer is within a sub-window, the hit routine is called, or else
 the loose menu item list is searched to find a new current
 item.
On return from any loose menu item action
 routines, D4 is checked. If it is non zero, the corresponding bit of
 the window event byte is set and WM.RPTR returns after
 testing D0.
On return from a sub-window hit routine the
 window byte of the event vector is checked. If any bits are set,
 WM.RPTR returns after
 testing D0.
Note

So, in a loose item action routine, all the code has to do is
 set D4 and WMAN takes care of setting the event vector. In an
 application sub-window action routine, it is the code itself that
 must set the event vector. [ND]

If a loose menu action routine or application sub-window hit
 routine returns a non-zero condition code, WM.RPTR will return
 after testing D0. This can be used to force a return without either an
 event or error.
4.1.2.9.1. WM.RPTR - Read Pointer

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub-system errors
	Any error returned by action or hit routines

Vector $30 WM.RPTR Read Pointer

 repeat until window event or error
 read pointer
 if event keystroke
 process it and call appropriate action/hit routine
 next read pointer

 clear current item if pointer moved out of it

 if keystroke
 process it and call appropriate action/hit routine
 next read pointer

 if in application sub-window
 call hit routine
 next read pointer

 if new current item
 set item and border

The window manager requires all application sub-windows to
 have hit routines. In the case of a standard format menu in an
 application sub-window, this may be just a direct jump to the
 WM.MHIT routine:
 JMP WM.MHIT(a2) do move or hit in standard menu
Note

I have found that if the pointer to the hit routine in the
 window definition is zero, then things work fine. However, if you
 have a application menu within the application sub-window then you
 must have a hit routine. This can be as above, the absolute
 minimum required, or more of your own code. Without a hit routine
 (that calls WM.MHIT) HITing or
 DOing a menu item has no effect. [GG, ND]

4.1.2.9.2. Application Sub-Window Hit Routine

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y pointer position	D1	Preserved
	D2	Uppercased keystroke, zero or -1	D2	Undefined
	D3	Not used	D3.W	Timeout for next call of PT.RPTR
	D4.B	Event number of keystroke	D4	Undefined
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to windows status area	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	D0 and the status register must be set on
 return

The pointer in D1 is in absolute, not
 sub-window, coordinates.
The uppercased keystroke in D2 also has SPACE ($20) converted
 to "hit" ($01) and ENTER ($0a) converted to "do" ($02). If D2 is -1,
 then the application sub-window has been "hit" by an external
 keystroke.
Note

If D2 is -1, then the definition of an external keystroke
 is, for example, pressing the key that has been defined as the
 activation keystroke for this application subwindow.

D4 can only be 0, pt..do (16) or pt..cancel (17) when the
 application sub-window hit routine is called. All other event
 keystrokes are handled by the routine WM.RPTR.
If a bit is set in the window byte of the event vector by a
 hit routine, then WM.RPTR will return
 to the application.
Note

WM.RPTR does not set
 the "do" event if the pointer is within an application sub-window:
 this is left to the sub-window's hit routine.

An application sub-window hit routine may, of course, set the
 "do" event bit at any time. (Or any other event bit. [ND])
D3 will normally be returned unchanged. For compatibility, the
 msw of D3 is ignored by WM.RPTR. For
 WM.RPTRT, the msw
 should be cleared if D3 is modified. If, for example, the
 application sub-window requires to monitor the keypress byte
 continuously, a short or even zero timeout may be specified.
Note

If a zero timeout is specified, the keystroke (as opposed to
 keypress) will always be zero.

4.1.2.9.3. WM.MHIT - Standard Application Sub-Window Hit
 Routine

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y pointer position	D1	Preserved
	D2	Uppercased keystroke or zero	D2	Preserved
	D3	Not used	D3.W	-1
	D4.B	Zero or pt..do	D4	Preserved
	D5+	Not used	D5+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A2	Not used	A1-A2	Preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	Any I/O sub system errors

Vector $34 WM.MHIT Standard Menu Hit

 if no keystroke and no current item
 find new current item
 if found: mark current item
 else if "hit" or DO
 find current item
 if found
 mark current item
 if current item available
 if HIT: toggle status
 if DO: set status selected
 redraw current item and call action routine
 if status changed: redraw current item
 else
 find matching selection keystroke
 if found
 un-mark current item
 set pointer
 mark current item
 if current item available
 toggle status
 redraw current item and call action routine
 if status changed: redraw current item

4.1.2.9.4. WM.MSECT - Find menu section

This routine is intended to be called from application
 sub-window hit routines to locate the appropriate section of a
 multiple section window and check for "hit" or "do" on the pan or
 scroll arrows, or for pan or scroll keystrokes.
	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D0	Not used	D0.W	Zero or pan/scroll item number (see below)
	D1.L	x, y pointer position (absolute)	D1	Preserved
	D2	Uppercased keystroke	D2	Undefined
	D3	Not used	D3	x, y section number
	D4.B	Event number of keystroke	D4	Preserved or pt..pan or pt..scrl
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	All preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Preserved
	A6	Not used by any routine	A6	Preserved

	Error
 Returns
	D0 will be eiter zero or the pan/scroll item
 number

The item number returned in D0.w is the pan/scroll item and is
 set only if D4 is set to pt..pan ($A) or pt..scrl ($B). The less
 significant byte is the section number to which the operation
 applies, the most significant nibble is %0111. Bits 8 to 11 specify
 the type of event in greater detail.
 Bit 8 set for scroll down or pan right
 Bit 9 set for pan left or right
 Bit 10 set for extra pan/scroll ("do" on arrows or ALT+SHIFT)
 Bit 11 zero

4.1.2.9.5. Standard Menu Action Routine

The action routines called from WM.MHIT are optional.
 As WM.MHIT sets the appropriate
 byte in the status block, it is not necessary for the application to
 do anything about a "hit" until a "do" causes WM.RPTR to return to
 the application. On the other hand, the action routine itself can
 set the "do" event, or it can act on the "hit" directly.
Note

The action routine is called on a "hit" whether the status
 is selected or unselected, but not if it is unavailable. The
 action routine may change the status of the item, or even the
 objects within the item.

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Virtual column/row for item	D1	Undefined
	D2.W	Item number	D2	Undefined
	D3	Not used	D3	Undefined
	D4.B	Zero or pt..do	D4	Zero or the window event to set
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to menu status block	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required by the routine
	A6	Not used by any routine	A6	Used as required by the routine

	Error
 Returns
	D0 and the status register must be set on
 return

(A1,D2.w) points to the current item's status byte. D4 may be
 set to force a "do" or any other window event.
If there is no action routine for a particular item, then a
 "do" keystroke will cause a "do" event.

4.1.2.9.6. Application Window Control Routine

The application window control routine is called either from
 the routine vWM.RPTRWM.RPTR for a
 "hit" on the pan or scroll bars associated with a window, or from
 WM.MHIT when there
 has been a "hit" on the pan or scroll arrows. The item number is the
 special item number for pan and scroll operations. The least
 significant byte gives the part menu number to be panned or
 scrolled. The routine may adjust the window itself or merely adjust
 the control tables and call the sub-window draw routine. In either
 case, the event flag should be set to zero. Alternatively the event
 flag may be left set, and then WM.RPTR will return
 to the calling routine with the appropriate event set.
If the routine is called as the result of a "hit" on a pan or
 scroll bar, the most significant word of D3 will hold the position
 of the hit, while the least significant word of D3 will hold the
 length of the bar. Otherwise the routine will have been called as a
 result of a "hit" on the arrow bars, in which case D3 will have the
 value -1.
	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1	Not used	D1	Undefined
	D2.W	Item number	D2	Undefined
	D3.L	Position of "hit" or -1	D3	Undefined
	D4.B	Pan or Scroll event	D4.B	Zero or window event to set
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to windows status area	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to sub-window definition	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	D0 and the status register must be set on
 return

The simplest form of control routine is just a call to the
 window manager panning and scrolling routine WM.PANSC:
 JMP WM.PANSC(A2) do standard pan scroll

4.1.2.9.7. Loose Menu Item Action Routine

The loose menu item action routines are similar to the
 standard menu action routines (after all, a loose menu item is
 really part of a standard menu). One difference is that the menu
 manager requires there to be an action routine for a loose item
 corresponding to an event.
	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	x, y pointer position	D1	Undefined
	D2.W	Uppercased keystroke	D2	Undefined
	D3.L	Not used	D3	Undefined
	D4.B	Event number of keystroke	D4.B	Zero or window event to set
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to windows status area	A1	Undefined
	A2	WMAN vector	A2	Undefined
	A3	Pointer to loose menu item	A3	Undefined
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	D0 and the status register must be set on
 return

The pointer in D1 is in absolute (not window) coordinates. The
 uppercased keystroke in D2 also has SPACE ($20) converted to "hit"
 ($01) and ENTER ($0a) converted to "do" ($02) and all other event
 keystrokes converted to the event number less 14.
If the loose menu item was "hit" by a window event keystroke,
 then the event number (16 to 23) will be in D4. Otherwise D4 will be
 zero. The action routines may set the appropriate bit in the event
 vector as required or may return an event number in D4. However,
 WM.RPTR will only
 return to the calling routine if D4 is non-zero or the condition
 codes are non-zero - the event vector is not checked
 directly.
In the case of a loose menu item which causes an event, the
 action routine may derive the event number from the selection
 keystroke. All such loose menu items may be handled by the same
 code:
 MOVEQ #14,D4 set event number - event code
 ADD.B WWL_SKEY(A3),D4 add event code
 MOVEQ #0,D0 done
 RTS

4.1.2.10. Pannable and Scrollable Sub-Windows

The window management routines have two views of pannable and
 scrollable windows. The first is the automatic pan and scroll
 operations within the routine WM.RPTR. These
 operations are caused by events occurring outside the application
 window. The second view is from the routine WM.MHIT which will
 cause pan or scroll operations from within a standard menu
 sub-window.
For either of these views, panning or scrolling will only be
 available if the appropriate part of the window working definition has
 been set up.
Any application may, of course, do its own panning or scrolling
 operations on a sub-window. It would be preferable if these operations
 were done in the same way as the window manager.
The values WWA_NXSC and WWA_NYSC define the pannablility and
 scrollability of a sub-window. If WWA_NYSC is 0, then the window is
 not scrollable, If it is 1, then the window is scrollable, but may not
 be split. If it is greater than 1, the window may be split into
 independently scrollable sections.

4.1.2.11. External Pan and Scroll

If a sub-window is set up to be scrollable, then the right hand
 border of the window is widened by 8 pixels to accommodate a "scroll
 bar". This scroll bar is 6 pixels wide and in two colours. The
 background bar represents the full "height" of the information being
 shown, superimposed on this is a shorter bar representing that part of
 the information which is actually visible.
A different section of the information may be viewed by
 "hitting" the scroll bar. "Hitting" the top of the scroll bar will
 scroll to the top of the information. "Hitting" the bottom of the
 scroll bar will scroll to the bottom, while "hitting" the middle will
 scroll to the middle.
As this bar is in the extended border of the sub-window, it is
 outside the sub-window and any "hit" in this area will not call the
 application sub-window hit routine. It will, instead, call the
 application sub-window control routine.
If the working definition has been set up so that there may be
 more than one vertical section, then the sub-window may be "split" by
 a "do" on the scroll bar. The scroll bar will also be split. Each
 section of the scroll bar represents the position of the visible
 information in the appropriate section of the sub-window. Conversely,
 a "do" on the break between two scroll bars will re-join the
 sections.
If a sub-window is set up to be pannable, then the bottom border
 is deepened by 5 pixels to accommodate a 4 pixel deep "pan bar". This
 functions in the same way as the scroll bar.

4.1.2.12. Internal Pan and Scroll

The standard menu hit routine WM.MHIT traps certain
 cursor movements as causing pan or scroll operations: these are ALT
 arrow to pan or scroll by one column or row at a time, and ALT SHIFT
 arrow to pan or scroll by the width or height of a section.
When a scrollable standard menu is drawn by WM.MDRAW, 4 pixel rows
 (plus the width of a current item border) are left vacant at the top
 and bottom of the sub-window. If there any rows above the topmost
 visible row, a row of up arrows is inserted at the top. If there are
 any rows below the bottommost visible row, then a row of down arrows
 is inserted at the bottom.
If a scrollable standard menu is split, then space is left at
 the split for two rows of arrows (separated by the width of a current
 item border).
If a row of up arrows is "hit", then the menu will scroll up by
 one item. If there is a "do" on a row of up arrows, then the menu will
 scroll up by the height of the section. The down arrows behave in a
 similar way.
When a pannable standard menu is drawn by WM.MDRAW, 8 pixel
 columns (plus twice the width of the current border) are left vacant
 at the left and right of the sub-window. These spaces are used for
 left and right arrows which have a similar function to the up and down
 arrows.

4.1.2.13. Sub-Window Indices

Standard menu sub-windows may have either a column or a row
 index (or both). These indices are outside the application sub-window
 and have no function except to convey information to the user. When a
 sub-window is panned or scrolled, the index will be updated at the
 same time.
Note

All well and good in theory, but in practice, indices don't
 actually work. [GG]

To assist with panning and scrolling standard menu sub-windows,
 a single routine is provided to pan, scroll, split or join a standard
 menu.
4.1.2.13.1. WM.PANSC - Pan/Scroll Standard Menu

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D2.W	Item number	D2	Preserved
	D3.L	Position of "hit" or -a	D3	Preserved
	D4.B	Pan or scroll event	D4.L	Zero
	D5+	Not used	D5+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1-A2	Not used	A1-A2	Preserved
	A3	Pointer to sub-window definition	A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	D0 and the status register must be set on
 return

4.1.2.14. Window Move and Change Size

The size dependent layout features of the Window Manager mean
 that the interpretation of a window change size operation is largely
 the responsibility of the application. If the Window Manager returns
 from WM.RPTR with a window
 move or change size event, then the routine WM.CHWIN may be called
 directly.
This routine determines the event and the initial pointer
 position from the window status area and calls the appropriate window
 query trap. The event bit is cleared at this stage. In the case of a
 window move, the operation will be completed by WM.CHWIN and 0 is
 returned in D4.
In the case of a change size operation, WM.CHWIN will determine
 the distance moved by the pointer and return this as the change of
 size. If the convention that the window change size icon is in the top
 left hand corner of the window is being followed, then the move
 distance should be subtracted from the current window size. The window
 size event number is returned in D4.
4.1.2.14.1. WM.CHWIN - Change Window Event Handling

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1	Not used	D1	x, y pointer move
	D2-D3	Not used	D2-D3	Preserved
	D4	Not used	D4.L	Zero or pt..wsiz
	D5+	Not used	D5+	All preserved
	A0	Not used	A0	Channel ID of window
	A1-A3	Not used	A1-A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	Any I/O sub-system errors

4.1.2.15. Utility routines

The following routines are provided to modify the working
 definition in various useful ways; in particular, they may be used to
 show status information or get user input that is more complex than
 can be shown by item statuses or "point and hit" input.
If an information object or loose menu item object requires to
 be redrawn, then the vectored routines WM.IDRAW and WM.LDRAW can be used.
 Before redrawing, the objects themselves can be changed using one of
 the two following routines.
4.1.2.15.1. WM.STLOB - Set Loose Item Object

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.W	Loose item number	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Preserved
	A1	Pointer to object	A1	Preserved
	A2-A3	Not used	A2-A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	ORNG Item number out of range

Warning

the item number is not the loose menu
 item number as defined in the loose menu item record, but is the
 position in the list (starting at zero).

4.1.2.15.2. WM.STIOB - Set Information Object

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1.L	Window number / object number	D1	Preserved
	D2+	Not used	D2+	All preserved
	A0	Not used	A0	Preserved
	A1	Pointer to object	A1	Preserved
	A2-A3	Not used	A2-A3	Preserved
	A4	Pointer to window working definition	A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	ORNG Window or object number out of range

The window number (high word of D1) is the position in the
 list of information sub-windows. The object number (lowword of D1)
 is the position in the list of information objects for that window.
 Both start from zero.
The object pointed to by A1 in the above routines is not
 copied to a "safe place" by the routines. It is up to the programmer
 to ensure that it does not move or get overwritten while it is in
 use as part of a working definition. In particular, pointing to a
 string value on the SuperBASIC RI stack or in the variable values
 area will cause problems.

4.1.2.15.3. WM.ENAME - Edit Name

See Section 4.1.2.15.4, “WM.RNAME - Read Name.” below.

4.1.2.15.4. WM.RNAME - Read Name.

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D1	Not used	D1.W	Terminating character
	D2+	Not used	D2+	All preserved
	A0	Channel ID of window	A0	Preserved
	A1	Pointer to object	A1	Preserved
	A2-A4	Not used	A2-A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	Any I/O sub system errors
	>0 if terminating character was not <NL>
 (Enter key)

These two routines are used to read or edit strings
 (notionally file or device names). The name buffer is in the form of
 a standard string: a word with the string length, followed by the
 characters themselves. The difference between the two vectors is
 that WM.RNAME puts the
 cursor at the start of the name, and if the first character is
 printable, throws the old name away, while WM.ENAME leaves the
 cursor at the end of the name so that it has to be edited.
 Additionally, if the first character typed is a space, WM.RNAME will treat
 this as an ENTER.
The length of the name is limited to the width of the window
 and the name buffer must be large enough to accommodate this plus
 one character.
The routines return on reading ENTER, ESC, UP arrow or DOWN
 arrow. The condition codes will be set to -ve for an IO error, zero
 for ENTER or positive for other terminator.
This routine converts a small negative error code in D0 into
 the corresponding string; for instance, D0=-2 converts to "invalid
 Job". This code works for AH, JM, JS/JSU and all MG versions of the
 QL ROM - if other versions are used then the catch-all string
 "unknown error" is returned.

4.1.2.15.5. WM.ERSTR - Get String Corresponding To Error
 Code

	Call
 Parameters	Return Parameters
	Register	Description	Register	Description
	D0	Error code	D0	Error code
	D1+	Not used	D1+	All preserved
	A0	Not used	A0	Preserved
	A1	Not used	A1	Pointer to error string
	A2-A4	Not used	A2-A4	Preserved
	A5	Not used by any routine	A5	Used as required
	A6	Not used by any routine	A6	Used as required

	Error
 Returns
	According to value of D0 on entry (D0 is
 preserved)

There is a limit on the length of programmer defined error
 messages. These error messages are easy to create:
 LEA my_msg,A0 ; Get address of message
 MOVE.L A0,D0 ; Into our "error" register
 BSET #31,D0 ; An error is negative
The length of the string is limited to 40 ($28) characters. If
 it is longer, "unknown error" is returned instead!

4.1.3. Index of TRAPs and vectors

The Pointer Interface TRAPs and Window Manager vectors are listed
 alphabetically, along with a summary of what each does. Pointer
 Interface TRAPs start with the prefix IOP. and Window Manager vectors
 with WM.
Routine Description

IOP.FLIM find window limits
IOP.LBLB draw a line of blobs
IOP.OUTL set window outline and shadow
IOP.PICK pick/unlock job
IOP.PINF get pointer information
IOP.RPTR read pointer position
IOP.RPXL read/scan pixel colour
IOP.RSPW restore part window
IOP.SLNK set bytes in linkage block
IOP.SPRY spray pixels
IOP.SPTR set pointer position
IOP.SVPW save part window
IOP.SWDF set sub-window definition pointer
IOP.WBLB write blob
IOP.WRST restore window contents
IOP.WSAV save window contents
IOP.WSPT write sprite
WM.CHWIN change window position or size
WM.DRBDR draw current item border
WM.ENAME edit name
WM.ERSTR get error string
WM.FSIZE find layout size
WM.IDRAW re-draw information window(s)
WM.INDEX draw index items
WM.LDRAW draw loose items
WM.MDRAW draw menu sub-window contents
WM.MHIT standard menu sub-window hit routine
WM.MSECT find menu section
WM.PANSC standard menu sub-window control routine
WM.PRPOS primary window position and clear
WM.PULLD pull-down window position and clear
WM.RNAME read name
WM.RPTR read pointer
WM.SETUP set up from standard window definition
WM.SMENU set up from standard menu definition
WM.STIOB (re)set information object
WM.STLOB (re)set loose object
WM.SWAPP set window to application sub-window
WM.SWINF set window to information sub-window
WM.SWLIT set window to loose item
WM.SWDEF set window to application sub-window
WM.SWSEC set window to section of sub-window
WM.UNSET unset working definition
WM.UPBAR update pan/scroll bars
WM.WDRAW draw window contents
WM.WRSET reset working definition

4.2. Data Structures

4.2.1. Pointer Interface

4.2.1.1. Channel definition block

The Pointer Interface forms the base level of the Pointer Environment and provides all those facilities
 which are accessed through the IO sub-system (IOSS). These include
 channel open, close and normal screen IO as well as the pointer IO
 extensions. The Pointer Environment uses this display driver which
 coexists with the standard CON and SCR drivers, and extends the CON
 and SCR drivers to handle overlapping windows. The extended driver
 requires an extended channel definition block, whose format is
 discussed here.
The PTR_KEYS file contains definitions of
 the symbols used when manipulating the extended channel definition
 block. Ordinary applications should not need to use these.
The facility to handle overlapping windows introduces the
 concept of piles of windows. Windows overlap each other in piles. Any
 window which is partly obscured by another window is locked and may
 not be altered. Windows may be moved to the top of the pile by the
 user, and applications may bury their own windows. Burying a window is
 actually performed by exhuming the bottom window in the pile. This
 will not actually bury the window unless the bottom window overlaps
 the top window. The internal structure used to maintain these piles is
 a bi-directional linked list of all primary windows. In addition, each
 primary window has a pointer to an area of memory in which to save its
 contents when it becomes locked, and a flag to signal whether the
 window is locked. For the sake of speed, the flag is duplicated in all
 its secondaries.
One of the major differences between the standard screen
 handling and Pointer Environment screen handling is the redirection
 of the keyboard input. Normally the "CTRL C" keystroke is used to
 redirect the keyboard input. With the Pointer Interface installed, the "CTRL C" keystroke is
 used to move windows to the top of the pile, redirecting the keyboard
 input as a side effect. This is achieved by modifying the normal
 circularly linked list of keyboard queues into a form that allows the
 detection of the "CTRL C" keystroke by the Pointer Interface. If the keyboard queue is moved to a
 job which is waiting for character input, then the pointer will be
 disabled, otherwise the pointer will be enabled. When the pointer is
 enabled, the cursor keys will move the pointer unless SHIFT, CTRL or
 ALT is pressed.
An alternative method of moving the window to the top of the
 pile may be used when the pointer is enabled. This is to move the
 pointer to part of a new window and "hit" it. If that window is
 buried, then the window will be picked to the top of the pile and the
 hit will be ignored. If the window is waiting for character input,
 then the pointer will be disabled and the hit will be ignored. The
 keyboard input will then be directed to that window.
To enable programs which have been written for use on a standard
 QL to function sensibly in the pointer environment, windows are
 divided into two types: primary and secondary. A primary window represents the total working area for
 an application. An application may have several secondary windows open, but all of these must be
 contained within the outline of the primary window. This introduces a
 new size concept. The standard screen driver in the QL has a window
 size and position: this is the window working area. The extended screen driver has two other sizes: the outline
 and the hit area. The outline is the limit enclosing all of an
 application's windows; Creating any window outside the application's
 primary window outline will cause the outline to be extended. The
 outline includes any window borders and shadows. The hit area is the
 area that the pointer routines will recognise for the purposes of
 hitting windows and selecting appropriate sprites. The hit area is the
 outline less any shadow area. The first window used for IO by an
 application is considered to be the primary window, any other windows
 owned by the same job are secondary windows. The outline and hit area
 are maintained in the extended channel definition block, along with a
 system of pointers linking primary windows to their secondaries, and
 all secondaries back to their primary.
The pointer routines may also make use of information in window
 definitions, so there is also a link to a window working
 definition.

4.2.1.2. Extended Channel Block

The pointer routines use an extended channel definition block.
 In order to make this compatible with the internal ROM code, the block
 is extended below the start of the standard
 block, but above the 18 byte channel block header.
	Name	Offset	Size	Description
	sd.extnl	$30	n/a	Screen definition extension length
	sd_xhits	-$18	Word	X hit size
	sd_yhits	-$16	Word	Y hit size
	sd_xhito	-$14	Word	X hit origin (screen coordinates)
	sd_yhito	-$12	Word	Y hit origin (screen coordinates)
	sd_xouts	-$10	Word	X outline size
	sd_youts	-$0E	Word	Y outline size
	sd_xouto	-$0C	Word	X outline origin (screen coordinates)
	sd_youto	-$0A	Word	Y outline origin (screen coordinates)
	sd_prwlb	-$08	Long	Primary link list bottom up (if a primary
 window)
	sd_pprwn	-$08	Long	Pointer to primary window (if a secondary
 window)
	sd_prwlt	$04	Long	Primary link list top down (if a primary
 window)
	sd_sewll	$00	Long	Secondary window link list pointer
	sd_wsave	$04	Long	Window save area base
	sd_wssiz	$08	Long	Size of window save area
	sd_wwdef	$1C	Long	Pointer to window working definition
	sd_wlstt	$10	Byte	Window lock status -1 locked, 0 unlocked, 1 no
 lock
	sd_prwin	$11	Byte	Bit 7 set for primary window. Bit 0 set if managed
 (IOP.OUTL called)
	sd_wmode	$12	Byte	Mode of this window
	sd_mysav	$13	Byte	True if save area is mine
	sd_wmove	$14	Byte	Window move / query flag (D2 from IOP.RPTR)

4.2.1.3. Graphics objects

These base level data structures are used to pass information to
 the base level pointer IO calls. All these structures represent visual
 information. These structures have various forms, there is a canonical
 form and a screen mode dependent form. To simplify application
 programs, variations on the objects for various display modes can be
 linked into lists which future versions of the pointer traps will scan
 for the most suitable form. In current versions the pointer traps
 require the objects to be specified in the actual display mode for the
 window.
The file QDOS_PT contains symbol
 definitions suitable for use in programs that manipulate graphics
 objects.
All the structures are made from a limited set of basic
 elements.
4.2.1.3.1. Form

The form is a word which describes the screen dependent mode
 of the following patterns, followed by two bytes describing the mode
 adaption rules. The first of these is relevant only when the object
 is a sprite used as a pointer, and defines how it changes with time:
 the second defines how the object may be adapted to fit the display
 aspect ratio.
Dynamic pointers, that change shape with time, are used by
 setting the time byte to a non-zero value: by linking several sprite
 definitions together with increasing time values (Tn), the sprite
 will appear in the lowest numbered form for T1 "ticks", then change
 to the second form for T2-T1 ticks, then the third for T3-T2, and so
 on. When no sprite can be found with a Tn greater than the elapsed
 time, the counter is reset to zero and the first form appears again.
 The maximum value of Tn being 255, and the count being incremented
 (roughly) every 20ms, the sprite may have a period of up to 5
 seconds or so.
 Form
 00fc canonical, aspect ratio 1:.50
 00fd canonical, aspect ratio 1:.60
 00fe canonical, aspect ratio 1:.71
 00ff canonical, aspect ratio 1:.83
 0000 canonical, aspect ratio 1:1.0
 0001 canonical, aspect ratio 1:1.2
 0002 canonical, aspect ratio 1:1.4
 0003 canonical, aspect ratio 1:1.7
 0004 canonical, aspect ratio 1:2.0

 0100 QL 4 colour
 0101 QL 8 colour

 Time
 00 static
 1..FF used for time<n

 Adaption
 00 translate pixel to pixel
 +01 expand x if required
 +02 contract x if required
 +04 expand y if required
 +08 contract y if required

4.2.1.3.2. Size

The size of an object is defined by two words, the number of
 pixels in the x direction, and the number of pixels in the y
 direction. The only limit on the size is that it must be positive
 non zero in both directions.

4.2.1.3.3. Repeat

Some types of information have a repeat attribute. This is two
 words, the repeat distance (in pixels) in the x direction, and the
 repeat distance (in pixels) in the y direction. The y repeat must be
 positive non zero, the x repeat must be a positive non zero multiple
 of the number of pixels in a 16 bit word.

4.2.1.3.4. Origin

The base level structures assume a pixel coordinate system
 with the origin at the top LHS with x increasing to the right, y
 increasing downwards. Objects may have their own origin which is
 defined as two words, x origin and y origin. A negative origin is
 outside the object to the left (x) or above (y). A zero origin is
 the top left pixel of the object.

4.2.1.3.5. Colour

For the canonical forms (and possibly some other forms) it is
 assumed that colours are represented by a maximum of 15 bits (32768
 colours). Notionally these are regarded as 5 bit resolution for each
 of the 3 primary colours. The 16th bit is used to indicate the
 opacity of the object. The order of bits, from most significant to
 least significant, is green, red, blue, green/2, red/2,
 red/16, blue/16, transparent. For monochrome, the 15 most
 significant bits represent the display brightness.

4.2.1.3.6. Pattern

Canonical patterns are defined as colour planes. A canonical
 pattern starts with a word which defines the number of planes that
 will follow. The block defining each plane is preceded by a colour
 word defining the contribution of the following block to the
 complete colour. In every block of a canonical pattern each bit
 represents a pixel, the most significant bit in the first word is
 the top left pixel. Unused parts of words should be filled with
 zeros.
E.g. canonical form of yellow block (5x4) enclosing a black
 block (3x2):
 dc.w 2 two blocks required
 dc.w %1100000000000000 define yellow
 dc.w %1111100000000000
 dc.w %1000100000000000
 dc.w %1000100000000000
 dc.w %1111100000000000
 dc.w %0000000000000001 define opaque
 dc.w %1111100000000000
 dc.w %1111100000000000
 dc.w %1111100000000000
 dc.w %1111100000000000
Specific form patterns are stored using the standard screen
 representation of the pattern. For this reason, there are two types
 of specific form pattern, the colour pattern, which is the colour
 representation, and the pattern mask which is white for opaque, and
 black for transparent. The base level routines require specific form
 patterns.

4.2.1.3.7. Sprite Definition

A sprite definition has form, size, origin, colour pattern and
 pattern mask.
 form 2 words
 size 2 words
 origin 2 words
 colour pattern long word relative pointer
 pattern mask long word relative pointer
 next definition long word relative pointer

4.2.1.3.8. Blob Definition

A blob is used to provide a mask through which a pattern is
 dropped into the screen. The critical distinction is that while the
 pattern formed by a sprite moves with the sprite, the pattern used
 with a blob is stationary. The effect is akin to removing a bit of
 the screen to reveal the pattern underneath.
A blob definition, therefore, has only form, size, origin and
 pattern mask.
 form 2 words
 size 2 words
 origin 2 words
 colour pattern long word zero
 pattern mask long word relative pointer
 next definition long word relative pointer

4.2.1.3.9. Pattern Definition

A pattern definition allows the specification of any pixel in
 the pattern to be any colour or transparent. The pattern repeats
 both horizontally and vertically. The pointer to the pattern mask
 may be given as zero, in which case the pattern is solid.
A pattern definition has form, repeat, colour pattern and
 pattern mask.
 form 2 words
 repeat 2 words
 origin 2 words zero
 colour pattern long word relative pointer
 pattern mask long word relative pointer (or 0)
 next definition long word relative pointer

4.2.1.3.10. Area Mask

An area mask defines the limits of an area operation. The form
 is a table of x (horizontal) limits for each y coordinate. There may
 be more than one table. The total storage required is:
 2 + 6*x_size + 4*(sum of y_sizes) bytes
The form of the definition is:
 x_size number of tables
 y_size length of this table
 x_origin origin of sub-area within window
 y_origin
 table 2 * y_size words lower limit, upper limit pairs
 (relative to x_origin)
The format of a partial save area is as follows:
 spare long may be used by the application
 flag word $4afc if this is a save area
 x_size word width of save area in pixels
 y_size word height of save area in pixels
 increment word distance in bytes from one row to next
 mode byte mode of saved image
 spare byte zero
 image increment * y_size bytes bit image

4.2.2. Window Manager

4.2.2.1. Window Definition

4.2.2.1.1. Structure

The window definition is split into several levels: at the top
 there is the window definition. Below this, there are the
 definitions of any loose menu items or sub-windows. Below these,
 there are the definitions of the object lists.
This section gives the standard meanings of the window
 definition structures. However, as it is the responsibility of the
 application's code to interpret the structures, the meanings may
 vary.
The file WMAN_WDEF contains definitions
 of the symbols used in this section: it may be INCLUDEd in any
 assembler files that manipulate window definitions.
Within these definitions all pointers are word length relative
 pointers. Where reference is to be made to an address which is more
 than a word offset away, the least significant bit is set. This
 (after clearing the bit) is then a pointer to a long word containing
 a relative address. All addresses are even. A zero pointer implies
 that the structure pointed to is absent.
In the following definitions, coordinates and sizes are
 specified as a pixel position or number of pixels. To allow for
 continuously variable window sizes, some coordinates and sizes can
 include terms to indicate the scaling of the coordinate or size with
 the variation in the appropriate dimension of the window. This is
 masked into the top nibble of the coordinate or size:
 0000 invariant
 0001 1:4 scaling wrt dimension
 0010 1:2 scaling wrt dimension
 0011 3:4 scaling wrt dimension
 0100 directly coupled to dimension.
The rest of the word has the coordinate or size corresponding
 to the minimum allowable window dimension.
To allow for a variety of different layouts within the window
 as the size of the window varies, part of the window definition may
 be repeated several times. The definitions should be made in order
 of decreasing window size. The last definition, which defines the
 smallest allowable window, should be followed by a word containing
 -1. If the top nibble of a layout size word is zero, then the layout
 may not be scaled: if it is 0100 then it may.
4.2.2.1.1.1. Fixed Part of Window Definition

	Name	Offset	Size	Description
	wd_xsize	$00	Word	Default window x size (width) in pixels
	wd_ysize	$02	Word	Default window y size (height) in pixels
	wd_xorg	$04	Word	Pointer x origin in window
	wd_yorg	$06	Word	Pointer y origin in window
	wd_wattr	$08	8 bytes	Window attributes
	wd_psprt	$10	Word	Pointer to pointer sprite for this window
	wd_lattr	$12	28 ($1C) bytes	Loose menu item attributes
	wd_help	$2e	Word	Pointer to help window
	wd_rbase	$30	n/a	Base of repeated part of window definition

4.2.2.1.1.2. Repeated Part of Window Definition

	Name	Offset	Size	Description
	wd_xmin	$00	Word	Minimum x size for this layout + scaling
 flag
	wd_ymin	$02	Word	Minimum y size for this layout + scaling
 flag
	wd_pinfo	$04	Word	Pointer to information sub-window list
	wd_plitm	$06	Word	Pointer to loose menu item list
	wd_pappl	$08	Word	Pointer to application sub-window definition
 list
	wd.elen	$0A	n/a	Repeated entry length

The origin of the window is the initial pointer position
 within the window. This will usually also determine the position
 of the window itself as the window management level will try to
 avoid moving the pointer. If the origin is given as zero, then the
 origin will be calculated from the position of the current
 item.
The window width and height exclude the border and shadow,
 i.e. they refer to the inside of the window.
The XMIN and YMIN sizes are actual sizes of the window,
 unless the most significant bit is set in which case they are the
 minimum sizes.

4.2.2.1.1.3. Window Attributes

The window attributes for the window definition are four
 words defining a window clear flag, the shadow depth, the border
 and paper. For sub-windows, the shadow depth should be zero. For
 the main window the typical shadow depth will be 2, the actual x
 and y shadows will be derived from this. The top bit of the clear
 flag is used to define whether or not the (sub-)window should be
 cleared when it is (re-)drawn: if it is set then the window is not
 cleared.
	Name	Offset	Size	Description
	wda_clfg	$00	Byte	Bit 7 clear to clear window. Bit 0 set/cleared to
 disable/enable cursor key pointer movements
	wda_shdd	$01	Byte	Shadow depth
	wda_borw	$02	Word	Border width
	wda_borc	$04	Word	Border colour
	wda_papr	$06	Word	Paper colour

Note

Bit 0 of wda_cflag determines whether or not the cursor
 keys allow the pointer to be moved within the window. George
 Gwilt has discovered that when the cursor keys are disabled (bit
 0 set) then you cannot HIT or DO any items in an application
 sub-window menu using the keyboard either. This could be a bug.
 This enabling or disabling is separate from the use of the
 CKEYON and CKEYOFF commands in SuperBasic. [ND]

4.2.2.1.1.4. Menu Item Attributes

To bring some semblance of order to the window organisation,
 all menu items within any one window or sub-window are constrained
 to have the same attributes. There is one set of attributes for
 each of the each of the three possible states of the item, and
 there is a border attribute to indicate the item currently pointed
 to.
	Name	Offset	Size	Description
	wda_curw	$00	Word	Current item border width
	wda_curc	$02	Word	Current item border colour
	wda_unav	$04	8 Bytes	Item unavailable attribute record
	wda_aval	$0C	8 Bytes	Item available attribute record
	wda_selc	$14	8 Bytes	Item selected attribute record
	wda.elen	$1C	n/a	Menu item attribute entry length

The individual attribute records are as follows:
	Name	Offset	Size	Description
	wda_back	$00	Word	Item background (paper) colour
	wda_ink	$02	Word	Text object ink colour
	wda_blob	$04	Word	Pointer to blob for pattern
	wda_patt	$06	Word	Pointer to pattern for blob

4.2.2.1.1.5. Loose Menu Items List

Loose menu items can be positioned anywhere within the
 window. The loose menu item list is just a list of object types,
 positions, actions and pointers. The list is terminated by a word
 containing -1.
	Name	Offset	Size	Description
	wdl_xsiz	$00	Word	Hit area x size (width) + scaling
	wdl_ysiz	$02	Word	Hit area y size (height) + scaling
	wdl_xorg	$04	Word	Hit area x origin + scaling
	wdl_yorg	$06	Word	Hit area y origin + scaling
	wdl_xjst	$08	Byte	Object x justification rule
	wdl_yjst	$09	Byte	Object y justification rule
	wdl_type	$0A	Byte	Object type (0=text, 2=sprite, 4=blob,
 6=pattern)
	wdl_skey	$0B	Byte	Selection keystroke (upper case)
	wdl_pobj	$0C	Word	Pointer to object
	wdl_item	$0E	Word	Item number
	wdl_pact	$10	Word	Pointer to action routine
	wdl.elen	$12	n/a	Loose menu item list entry length

The selection keystroke should be the upper
 case value for letters and the event
 code (not the event number) for the event keystrokes.
 The event code is the event number minus 14. It may also be
 convenient for the item number to be the same as the selection
 keystroke/event code for these items. If the selection keystroke
 should be underscored (which is for text items possible), then the
 type is text-position. Thus, if you wish to underscore the third
 character, type is 0-3, giving -3.

4.2.2.1.1.6. Information Sub-Window

An information sub-window is set up when the menu is set up,
 but has no further significance. The definition of information
 sub-windows is in the form of a list terminated by a word
 containing -1.
	Name	Offset	Size	Description
	wdi_xsiz	$00	Word	Sub-window x size (width) in pixels +
 scaling
	wdi_ysiz	$02	Word	Sub-window y size (height) in pixels +
 scaling
	wdi_xorg	$04	Word	Sub-window x origin + scaling
	wdi_yorg	$06	Word	Sub-window y origin + scaling
	wdi_watt	$08	8 Bytes	Sub-window attributes
	wdi_pobl	$10	Word	Pointer to information object list
	wdi.elen	$12	n/a	Information list entry length

The information sub-window origin is the pixel position of
 the top left hand corner of the inside of the sub-window with
 respect to the top left hand corner of the window.

4.2.2.1.1.7. Information Object List

Each object in an information object list has only a limited
 set of attributes, and these may be different for each object. The
 list for each information sub-window is terminated by a word
 containing -1.
	Name	Offset	Size	Description
	wdo_xsiz	$00	Word	Object x size (width) in pixels + scaling
	wdo_ysiz	$02	Word	Object y size (height) in pixels + scaling
	wdo_xorg	$04	Word	Object x origin + scaling
	wdo_yorg	$06	Word	Object y origin + scaling
	wdo_type	$08	Byte	Object type (0 = text, 2 = sprite, 4 = blob, 6 =
 pattern)
	wdo_spar	$09	Byte	Spare (zero)
	Then...
	wdo_ink	$0A	Word	Text ink colour (Type = 0 - text only)
	wdo_csiz	$0C	Word	Text character size - two bytes (Type = 0 - text
 only)
	Or ...
	wdo_comb	$0A	Word	Pattern or blob to combine (Type=4 - blob or 6 -
 pattern only)
	Then
 ...
	wdo_pobj	$0E	Word	Pointer to object
	wdo.elen	$10	n/a	Information object list entry length

4.2.2.1.1.8. Application Sub-Window List

Because the size of an application sub-window definition is
 dependent on the usage of the definition, the application
 sub-window list is just a list of pointers to individual
 application sub-window definitions. The list is terminated with a
 zero word.

4.2.2.1.1.9. Menu Object Lists

Because menus are of indefinite size, the descriptions of
 the objects in a menu are put into lists so that these may be set
 up at execution time.
It is assumed, by the menu interface, that the objects are
 arranged in a rectangular grid. Each column of the grid has a
 fixed width, each row a fixed height. The interface also allows
 for an index to the columns and an index to the rows to be placed
 above and to the left of the grid.
There are two dimensions, the first is the actual number of
 columns, the second is the number of rows. All of the lists have
 either one dimension or the other.
Each of the object spacing lists consists of pairs of
 numbers. The first word is the hit area width or height. the
 second number is the distance from the start of this hit area to
 the start of the next. Both spacings are in pixels. There must be
 sufficient gap between the objects to allow the current item
 border to be drawn.
Each of the object index lists has the same form as the
 object list described below. The item numbers within these lists
 should be set to -1 and the action routine pointers to
 zero.
The object item lists consist of a set of list entries, one
 for each column in a row. Each object list entry contains the item
 number for the object, the object type (text, sprite etc.), the
 justification (left, right or centre, top, bottom or centre), a
 pointer to the actual object and a pointer to an action routine to
 be called when the object is hit. Note that it is possible to have
 just one large object list, which is 'cut up' into rows by making
 each row list start pointer equal to the previous row list end
 pointer.
The justification rule bytes are zero for a centered object,
 positive for left or top justified and negative for right or
 bottom justified. The value indicates the distance of the object,
 in pixels, from the edge of the hit area.
The row list consists of pairs of pointers to the start and
 end of each object list.

4.2.2.1.1.10. Application Sub-Window Definition

	Name	Offset	Size	Description
	wda_xsiz	$00	Word	Sub-window x size (width) in pixels +
 scaling
	wda_ysiz	$02	Word	Sub-window y size (height) in pixels +
 scaling
	wda_xorg	$04	Word	Sub-window x origin + scaling
	wda_yorg	$06	Word	Sub-window y origin + scaling
	wda_watt	$08	8 Bytes	Sub-window attributes
	wda_pspr	$10	Word	Pointer to pointer sprite for this
 sub-window
	wda_setr	$12	Word	Pointer to application sub-window setup
 routine
	wda_draw	$14	Word	Pointer to application sub-window draw
 routine
	wda_hit	$16	Word	Pointer to application sub-window hit
 routine
	wda_ctrl	$18	Word	Pointer to application sub-window control
 routine
	wda_nxsc	$1A	Word	Maximum number of x control sections
 allowed
	wda_nysc	$1C	Word	Maximum number of y control sections
 allowed
	wda_skey	$1E	Byte	Application sub-window selection keystroke
 (Uppercased)
	wda_ext	$1F	Byte	Zero
	wda.blen	$20	n/a	Application sub-window basic definition
 length

The application sub-window origin is the pixel position of
 the top left hand corner of the inside of the sub-window with
 respect to the top left hand corner of the window.
The pointers to the sub-window pan and scroll control blocks
 and the menu status block are relative to the start of
 the window status area.
4.2.2.1.1.10.1. Pannable and Scrollable Sub-Windows Only

If the application sub-window definition has non-zero
 values in wda_nxsc or wda_nysc, the following structure is
 required:
	Name	Offset	Size	Description
	wda_part	$00	Word	Pointer to the part window control block (or
 zero) for pan, scroll and split definitions
	wda_insz	$02	Word	Index hit size + scaling
	wda_insp	$04	Word	Index spacing left or above sub-window +
 scaling
	wda_icur	$06	Long	Index current item attributes (Border width and
 colour)
	wda_iiat	$0A	8 Bytes	Index item attribute record
	wda_psac	$12	Word	Pan or scroll arrow colour
	wda_psbc	$14	Word	Pan or scroll bar background colour
	wda_pssc	$16	Word	Pan or scroll bar section colour
	wda.clen	$18	n/a	Application sub-window control definition
 length

If a window is both pannable and scrollable, then there
 should be two complete sub-window control definitions.

4.2.2.1.1.10.2. Menu Sub-Windows Only

The following structure is required for any sub-windows
 which are required to have menus:
	Name	Offset	Size	Description
	wda_mstt	$00	Word	Pointer to the menu status block (Relative to the
 window status block)
	wda_iatt	$02	12 ($1C) bytes	Item attributes
	wda_ncol	$1E	Word	Number of actual columns
	wda_nrow	$20	Word	Number of actual rows
	wda_xoff	$22	Word	X offset to start of menu (section)
	wda_yoff	$24	Word	Y offset to start of menu (section)
	wda_xspc	$26	Word	Pointer to x (column) spacing list
	wda_yspc	$28	Word	Pointer to y (row) spacing list (If all rows are
 spaced equally, zero - row spacing)
	wda_xind	$2A	Word	Pointer to x (column) index list (If all rows are
 spaced equally, zero - column spacing)
	wda_yind	$2C	Word	Pointer to y (row) index list
	wda_rowl	$2E	Word	Pointer to menu row list
	wda.mlen	$30	n/a	Application sub-window menu definition
 length

4.2.2.1.1.10.3. Menu Object Spacing List

If a spacing list consist of items of the same size, then
 the pointer to the spacing list may be replaced by the negative
 spacing values.
	Name	Offset	Size	Description
	wdm_size	$00	Word	Object hit size + scaling
	wdm_spce	$02	Word	Object spacing + scaling
	wdm.slen	$04	n/a	Spacing list element length

4.2.2.1.1.10.4. Menu Row List

	Name	Offset	Size	Description
	wdm_rows	$00	Word	Pointer to object row list start
	wdm_rowe	$02	Word	Pointer to object row list end
	wdm.rlen	$04	n/a	Menu row list element length

4.2.2.1.1.10.5. Menu Object / Index List Entry

	Name	Offset	Size	Description
	wdm_xjst	$00	Byte	Object x justification rule
	wdm_yjst	$01	Byte	Object y justification rule
	wdm_type	$02	Byte	Object type (0 = text, 2 = sprite, 4 = blob, 6 =
 pattern)
	wdm_skey	$03	Byte	Item selection keystroke (Uppercased)
	wdm_pobj	$04	Word	Pointer to item object
	wdm_item	$06	Word	Item number if this defines a menu object; or -1
 if this defines an index list entry
	wdm_pact	$08	Word	Pointer to item action routine (Zero if this
 defines an index list entry)
	wdm.olen	$0A	n/a	Menu object / index list entry length

4.2.2.2. Working Definition

To allow a very large degree of flexibility in the handling of
 windows and menus, the actual definition of a window used by the
 window management routines is set up during execution. Because this
 definition will usually be set up before pulling down a window, and
 discarded after throwing the window away, this is referred to as the
 working definition.
The window definition is principally a definition of a pull-down
 window. It may, however, include definitions of menus within the
 window. The window working definition is a copy of the window
 definition, with the addition of the definitions of menus whose
 contents are defined at execution time. The form of the working
 definition is chosen to simplify menu handling.
Within a window, it is likely that sub-windows will exist which
 are either menus in a non-standard form, or not menus at all. In
 either of these cases the corresponding part of the window working
 definition may be absent or of non-standard form.
Within the working definition all pointers are long word
 absolute pointers. All addresses are even. A zero pointer implies that
 the structure pointed to is absent.
The file WMAN_WWORK contains definitions of
 the symbols used in this section: it may be INCLUDEd in any assembler
 files that manipulate working definitions.
4.2.2.2.1. Header Block

The working definition starts with a header block. This has
 three functions: the first is to save the window channel ID, the
 original window definition address and the window status area
 address; the second is to point to the pointer record, to save the
 pointer position as it was before the window was opened, and to flag
 whether the window is a primary or a pull-down (secondary); the
 third is to provide the sprite list for the base level of the
 pointer interface.
	Name	Offset	Size	Description
	ww_wstat	$00	Long	Pointer towindow status area
	ww_wdef	$04	Long	Pointer to window definition
	ww_chid	$08	Long	Channel ID for window
	ww_pprec	$0C	Long	Pointer to pointer record (24 bytes)
	ww_psave	$10	Long	Saved pointer position (Absolute coordinates)
	ww_spar1	$14	Long	Window spare 1
	ww_spar2	$18	Word	Window spare 2
	ww_spar3	$1A	Byte	Window spare 3
	ww_pulld	$1B	Byte	Flag, non-zero if pulled down
	ww_splst	$1C	Long	Pointer to sub-window sprite list

The channel ID is set when the window is opened by the window
 open routine.
The pointer position is saved when the window is opened, and
 restored when the window is thrown away.

4.2.2.2.2. Window Definition Block

The header block is immediately followed by the window
 definition block:
 ww_xsize $20 word window x size (width) in pixels
 ww_ysize $22 word window y size (height) in pixels
 ww_xorg $24 word pointer x origin in window
 ww_yorg $26 word pointer y origin in window
 ww_wattr $28 window attributes
 ww_psprt $30 long pointer to pointer sprite for this window
 ww_lattr $34 loose menu item attributes
 ww_help $5c long pointer to help definition
 ww_head $60 end of header

 ww_ninfo $60 word number of information sub-windows
 ww_ninob $62 word number of information sub-window objects
 ww_pinfo $64 long ptr to information sub-window definition list
 ww_nlitm $68 word number of loose menu items
 ww_plitm $6a long pointer to loose menu item list
 ww_nappl $6e word number of application sub-windows
 ww_pappl $70 long ptr to application sub-window definition list
 ww_lists $74 start of definition lists
The window width and height exclude the border and shadow,
 i.e. they refer to the inside of the window.
The origin of the window is the position of the top left hand
 corner of the inside of the window is display coordinates.

4.2.2.2.3. Window Attributes

The window attributes for the working definition are identical
 to those for the window definition.
 wwa_clfg $00 byte MSbit set to clear window
 wwa_kflg $00 byte Bit 0 set disables keys moving the mouse
 wwa_shdd $01 byte shadow depth
 wwa_borw $02 word border width
 wwa_borc $04 word border colour
 wwa_papr $06 word paper colour

4.2.2.2.4. Menu Item Attributes

The menu item attributes for the working definition are
 similar to those for the window definition. They occupy rather more
 space as they use long word pointers.
 wwa_curw $00 word current item border width
 wwa_curc $02 word current item border colour
 wwa_attr $04 attribute records
 wwa_unav $04 item unavailable
 wwa_aval $10 item available
 wwa_selc $1c item selected
 wwa.elen $28 menu item attribute entry length
Attribute records are defined as follows:
 wwa_back $00 word item background colour
 wwa_ink $02 word text object ink colour
 wwa_blob $04 long pointer to blob for pattern
 wwa_patt $08 long pointer to pattern for blob
 wwa.alen $0c attribute record length

4.2.2.2.5. Loose Menu Items List

Loose menu items can be positioned anywhere within the window.
 The loose menu item list is just a list of object types, positions,
 actions and pointers. The list is terminated by a word containing
 -1. Apart from the use of long word pointers, the loose menu item
 list is the same as in the window definition.
 wwl_xsiz $00 word hit area x size (width)
 wwl_ysiz $02 word hit area y size (height)
 wwl_xorg $04 word hit area x origin
 wwl_yorg $06 word hit area y origin
 wwl_xjst $08 byte object x justification rule
 wwl_yjst $09 byte object y justification rule
 wwl_type $0a byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
 wwl_skey $0b byte selection keystroke (upper case)
 wwl_pobj $0c long pointer to object
 wwl_item $10 word item number
 wwl_pact $12 long pointer to action routine
 wwl.elen $16 loose menu item list entry length
The selection keystroke should be the 'upper case' value for
 letters and the event code (not the event number) for the event
 keystrokes. The event code is the event number minus 14.

4.2.2.2.6. Information Sub-Window

An information sub-window is set up when the menu is set up,
 but has no further significance. The definition of information
 sub-windows is in the form of a list terminated by a word containing
 -1. Apart from the use of long word pointers, the information
 sub-window list is the same as in the window definition.
 wwi_xsiz $00 word sub-window x size (width) in pixels
 wwi_ysiz $02 word sub-window y size (height) in pixels
 wwi_xorg $04 word sub-window x origin
 wwi_yorg $06 word sub-window y origin
 wwi_watt $08 sub-window attributes
 wwi_pobl $10 long pointer to information object list
 wwi.elen $14 information list entry length
The information sub-window origin is the pixel position of the
 top left hand corner of the inside of the sub-window with respect to
 the top left hand corner of the window.

4.2.2.2.7. Information Object List

Each object in an information object list has only a limited
 set of attributes, which may be different for each object. The list
 for each information sub-window is terminated by a word containing
 -1.
 wwo_xsiz $00 word object x size (width) in pixels
 wwo_ysiz $02 word object y size (height) in pixels
 wwo_xorg $04 word object x origin
 wwo_yorg $06 word object y origin
 wwo_type $08 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
 wwo_spar $09 byte spare

Then either...

(wwo_ink $0a word text ink colour type=0
(wwo_csiz $0c word text character size (two bytes)

or

(wwo_comb $0a long pattern or blob to combine type=4 or 6

Followed by ...

 wwo_pobj $0e long pointer to object
 wwo.elen $12 information object list entry length

4.2.2.2.8. Application Sub-Window List

Because the size of an application sub-window definition is
 dependent on the usage of the definition, the application sub-window
 list is just a list of long word pointers to individual application
 sub-window definitions. The list is terminated with a zero long
 word.
4.2.2.2.8.1. Application sub-window definition

 wwa_xsiz $00 word sub-window x size (width) in pixels
 wwa_ysiz $02 word sub-window y size (height) in pixels
 wwa_xorg $04 word sub-window x origin
 wwa_yorg $06 word sub-window y origin
 wwa_watt $08 sub-window attributes
 wwa_pspr $10 long pointer to pointer sprite for this sub window
 wwa_draw $14 long ptr to application sub-window draw routine
 wwa_hit $18 long pointer to application sub-window hit routine
 wwa_ctrl $1c long pointer to sub-window control routine (or 0)
 wwa_nxsc $20 word maximum number of x control sections
 wwa_nysc $22 word maximum number of y control sections
 wwa_skey $24 byte application sub-window selection keystroke
 wwa.blen $28 application sub-window basic definition length
The application sub-window origin is the pixel position of
 the top left hand corner of the inside of the sub-window with
 respect to the top left hand corner of the window.

4.2.2.2.8.2. Pan & Scroll Sub-Windows Only

Two control definitions, of the following structure, will
 always be present. The first will only be set up (non-zero) for
 pannable sub-windows, the second only for scrollable
 sub-windows.
The two control definitions must be
 present for all application sub-windows, but need only be set up
 if the sub-window is pannable (wwa_nxsc<>0) or scrollable
 (wwa_nysc<>0).
 wwa_part $28 long ptr to the part window control block (or 0)
 for pan, scroll and split definitions
 wwa_insz $2c word index hit size + scaling
 wwa_insp $2e word index spacing left or above
 sub-window + scaling
 wwa_icur $30 long index current item attr. (border width, colour)
 wwa_iiat $34 index item attribute record
 wwa_psac $40 word pan or scroll arrow colour
 wwa_psbc $42 word pan or scroll bar colour
 wwa_pssc $44 word pan or scroll bar section colour
 wwa.clen $1e applic. sub-window control definition length

4.2.2.2.8.3. Menu Sub-Windows Only

 wwa_mstt $64 long pointer to the menu status block
 wwa_iatt $68 item attributes
 wwa_ncol $90 word number of actual columns
 wwa_nrow $92 word number of actual rows
 wwa_xoff $94 word x offset to start of menu (section)
 wwa_yoff $96 word y offset to start of menu (section)
 wwa_xspc $98 long pointer to x (column) spacing list
 wwa_yspc $9c long pointer to y (row) spacing list
 wwa_xind $a0 long pointer to x (column) index list
 wwa_yind $a4 long pointer to y (row) index list
 wwa_rowl $a8 long pointer to menu row list
 wwa.mlen $48 length of menu working definition

4.2.2.2.8.4. Menu Object Lists

It is assumed, by the menu interface, that the objects are
 arranged in a rectangular grid. Each column of the grid has a
 fixed width, each row a fixed height. The interface also allows
 for an index to the columns and an index to the rows to be placed
 above and to the left of the grid.
There are two dimensions, the first is the actual number of
 columns, the second is the number of rows. All of the lists have
 either one dimension or the other.
Each of the object spacing lists consists of pairs of
 numbers. The first is the hit area width or height, the second is
 the distance from the start of this hit area to the start of the
 next. Both spacings are in pixels. There must be sufficient gap
 between the objects to allow the current item border to be
 drawn.
If you supply a negative spacing value instead of a pointer
 to the spacing list, then all rows or columns are treated as being
 of the same size.
Each of the object index lists has the same form as the
 object item list described below. The item numbers within these
 lists should be negative, and the action routine pointers
 zero.
The object item lists consist of a set of list entries, one
 for each column in a row. Each object list entry contains the item
 number for the object, the object type (test, sprite etc.), the
 justification (left, right or centre, top, bottom or centre), a
 pointer to the actual object and a pointer to an action routine to
 be called when the object is hit. Note that it is possible to have
 just one large object list, which is 'cut up' into rows by making
 each row list start pointer equal to the previous row list end
 pointer.
The justification rule bytes are zero for a centered object,
 positive for left or top justified and negative for right or
 bottom justified. The value indicates the distance of the object,
 in pixels, from the edge of the hit area.
The row list consists of pairs of pointers to the start and
 end of each object list.
4.2.2.2.8.4.1. Menu Object Spacing List

 wwm_size $00 word object hit size
 wwm_spce $02 word object spacing
 wwm.slen $04 object spacing list element length

4.2.2.2.8.4.2. Menu Row List

 wwm_rows $00 long pointer to object row list start
 wwm_rowe $04 long pointer to object row list end
 wwm.rlen $08 menu row list element length

4.2.2.2.8.4.3. Menu Object / Index List Entry

 wwm_xjst $00 byte object x justification rule
 wwm_yjst $01 byte object y justification rule
 wwm_type $02 byte object type (0=text, 2=sprite, 4=blob, 6=pattern)
 wwm_skey $03 byte selection keystroke (upper case)
 wwm_pobj $04 long pointer to object
 wwm_item $08 word item number (-ve for index)
 wwm_pact $0a long pointer to action routine (zero for index)
 wwm.olen $0e menu object / index list entry length

4.2.2.3. Working Definition Organisation

As the working definition is held together with pointers, it is
 not necessary for the data to be contiguous, or even in related parts
 of the memory. The window management setup routine, however, does
 transfer the data from the window definition to the working definition
 in an orderly manner.
 header
 ww_lists (116)
 information window list
 wwi.elen (20) x ww_ninfo + 2
 information object lists
 wwo.elen (18) x ww_ninob + 2 x ww_ninfo
 loose menu item list
 wwl.elen (22) x ww_nlitm + 2
 application window list
 4 x ww_nappl + 4
 application window definitions
The application sub-window definition set up by the window
 management routine WM.SETUP is $64 bytes long. This definition
 may be extended by either an application setup routine or the menu
 management setup routine.
An application sub-window definition set up by the menu
 management setup routine WM.SMENU has the
 following structure:
 application window definition
 wwa.blen + 2 x wwa.clen + wwa.mlen (172)
 column spacing list
 wwm.slen (4) x wwa_ncol
 row spacing list
 wwm.slen (4) x wwa_nrow
 column index index (optional)
 (wwm.olen (14) x wwa_ncol)
 row index list (optional)
 (wwm.olen (14) x wwa_nrow)
 menu row list
 wwm.rlen (8) x wwa_nrow
 menu object lists
 wwm.olen x nr of objects

4.2.2.4. Window Status Area

The window status area is used for communication between the
 application and the window and menu management routines. The window
 status area contains the pointer record, the tables giving the current
 sub-window and menu item, the control blocks for the pan, scroll and
 split status of a sub-window and the tables giving the status of all
 menu items.
The file WMAN_WSTATUS contains definitions
 of the symbols used in this section: it may be INCLUDEd in any
 assembler files that manipulate window status areas.
There is a fixed size base area which is pointed to from the
 window working definition header:
window linkage area

 ws_work $00 long pointer to window working definition
 ws_wdef $04 long pointer to window definition

window working area

 ws_point $08 pointer record (24 bytes)
 wsp_chid $08 long channel ID of window enclosing the pointer
 wsp_swnr $0c word sub-window number enclosing pointer (or -1)
 wsp_xpos $0e word pointer x pixel position (sub-window)
 wsp_ypos $10 word pointer y pixel position (sub-window)
 wsp_kstr $12 byte key stroke (uppercase) (or 0)
 wsp_kprs $13 byte key press (as pressed on keyboard) (or 0)

 wsp_evnt $14 long event vector
 wsp_jeve $14 byte job byte of event vector
 wsp_weve $15 byte window byte of event vector
 wsp_seve $16 byte sub-window byte of event vector
 wsp_peve $17 byte pointer byte of event vector

 ws_subdf $18 sub-window area definition (4 words)
 wsp_xsiz $18 word sub-window x size (width)
 wsp_ysiz $1a word sub-window y size (height)
 wsp_xorg $1c word sub-window x origin
 wsp_yorg $1e word sub-window y origin

 ws_ptpos $20 long pointer position (absolute)
 ws_wmode $24 word display mode for this window

 ws_ciact $2c long pointer to current item action routine
 ws_citem $30 word current item in sub-window
 ws_cibrw $32 word current item border width
 ws_cipap $34 word paper colour behind current item
 ws_cispr $36 word spare
 ws_cihit $38 current item hit area (absolute coordinates)
 ws_cihxs $38 word hit area x size
 ws_cihys $3a word hit area y size
 ws_cihxo $3c word hit area x origin in sub-window
 ws_cihyo $3e word hit area y origin in sub-window
The current item action routine is called whenever the the
 pointer is moved, or may be moved, while the current item is zero or
 positive. If this pointer is zero the internal current item routines
 are called: these require all the rest of the current item status area
 to be correctly set. If an action routine is supplied, then the $10
 bytes after the action routine may be redefined as required.
The fixed size area is followed immediately by the loose
 menu item status block which gives the status of all the loose menu
 items. The block is indexed by the loose menu item number. The status
 block should be preset by the application: thereafter it is maintained
 by the window management routines.
loose menu item status block

 ws_litem $40 one byte per loose item ($10 is unavailable,
 $00 is available, $80 is selected)
The rest of the status area is in a free format. It may
 contain status blocks for the application sub-window menus (if any)
 and pan and scroll control blocks. Since there is a pointer from the
 window working definition to each of these blocks, they need not be
 contiguous and may be in completely unrelated parts of the
 memory.
For each standard format sub-window, there is a status block
 giving the status of each item in the sub-window menu.
sub-window menu item status block
 wss_item $00 one byte per menu item ($10 is unavailable,
 $00 is available, $80 is selected)
The status bytes in the item status blocks are used for
 communication between the application and the menu handling routines.
 Initially, the status of each item is set by the application. The
 window and menu drawing routines will draw each item using the
 appropriate colours patterns and blobs. The byte is divided into two
 nibbles: the upper nibble contains the required (or actual status),
 the lower nibble is zero except when an action routine requires an
 item to be redrawn.
If an item is "hit", or selected by keystroke, then, if the item
 is available, the status is changed. If an item is hit by a "do" then,
 if the item is available, the status is set to selected. If an action
 routine requires the status of any items to be redrawn, then the new
 status should be set in the upper nibble, and the least significant
 bit set.
 Status Normal Redraw

 unavailable $10 $11
 available $00 $01
 selected $80 $81
For each sub-window, there may be an optional pan or scroll and
 split control block for horizontal and vertical control of a
 window.
This block starts with the number of pannable or scrollable
 sections, followed by a list of the start and end row or column number
 of each section. As usual, the start row or column is included in the
 section, the end row or column is excluded.
sub-window section control block header

 wss_nsec $00 word number of sections

sub-window section control block record

 wss_spos $00 word section start pixel position
 wss_sstt $02 word section start column or row
 wss_ssiz $04 word section size (number of columns or rows)
 wss.ssln $06 section status list entry length
If there is not a minimum size of ww.scarr for scroll arrows or
 ww.pnarr for pan arrows, they are not drawn at all.

4.3. Assembler Macros

4.3.1. Rules and Reserved Symbols

Within the body of a description, the macro substitution syntax of
 [name] is used where the value of the variable or macro parameter
 name is meant: in general, macro parameters are in
 Courier and global variables in UPPER_CASE. New variables and labels may
 be created from global and local variables: for instance, the ACTION macro is of the
 form:
ACTION MACRO name
 ...
 XREF MEA_[name]
 ...
 ENDM

An invocation of this macro might be:
 ACTION QUIT
producing the expansion:
 ...
 XREF MEA_QUIT
 ...
At the start of a definition, the square brackets take their usual
 meaning of defining an optional parameter.
The variables CLAYOUT, CURRA, CURRW, MAXITEM and WSIZES are used by the macros, and
 should not be used for other purposes.
The prefixes shown below are used by the macros, for the purposes
 specified. In general, you should avoid using any symbol with these
 prefixes in your own code. Those marked external are
 XDEFfed or XREFfed by the macros. Those marked
 var(iable) are used as assembler variables to keep track of which
 layout(s) the corresponding object is used in.

4.3.2. List of Macros

Prefix External Var Use

MAD_ Label for application sub-window definition
 Y Layouts using this sub-window

MAW_ Y Label for application sub-window list
 Y Layouts using this application sub-window list

MEK. Y Value of item select key

MEA_ Y Label of externally defined code:
MEC_ this may be an Action/Hit, Control,
MED_ Drawing or Menu-setup routine.
MEM_

MEB_ Y Label of externally defined objects:
MEP_ these may be a Blob, Pattern,
MES_ Sprite or Text.
MET_

MIO_ Label for an info. object list
 Y Layouts using this list

MIW_ Label for an info. sub-window list
 Y Layouts using this list

MLI_ Label for a loose item list
 Y Layouts using this list

MOB_ Label for menu sub-window or (first) index object
 Y Layouts using this object

MPS_ Y Label for externally-accessible co-ordinates

MRW_ Label for menu sub-window row list
 Y Layouts using this row list

MST_Y Offset of menu sub-window status block from
 start of global status area

MSX_ Label for X or Y spacing list
MSY_ Y Layouts using this spacing list

MV_ Y Label for space in global status area allocated
 by ALCSTAT macro

NCX. Y Number of control sections in the
NCY. X or Y direction for a menu sub-window

WAL_ Y Start of ALCSTAT area in global status area
 Variable holds running total of space needed
WCX_ Y Offset of X or Y section control block
WCY_ from start of global status area

WST_ Y Offset of window status area from start of global status area
WWx. Y Size of Working Definition needed for layout x

4.3.3. Menu Macros

This section documents the action of the utility macros supplied
 in the file WMAN_MENU_MAC. These macros assist in
 the generation of standard format Window Definitions by automatically
 generating the XDEF and XREF directives
 required to use the definition: they also relieve the programmer of the
 burden of remembering the size of each data item.
Most symbols generated by these macros have a four character
 prefix showing their type. This means that in the user-supplied symbol,
 usually referred to as the name, only the first
 four characters will be significant.
There is, of course, no need to use these macros to generate
 Window Definitions: in particular, any constraint of size and label name
 is imposed only by these macros, and not by the data structures
 themselves. Modification of the macros, or direct generation of the
 definition, is definitely recommended if you can't get the effect you
 want.
4.3.3.1. Structure

The major data structure produced by the macros is the Window
 Definition. This is of the form documented in the previous section of
 this manual, and is thus appropriate for conversion to its Working
 Definition by the WM.SETUP routine of the
 Window Manager. Each of an application's Window Definitions has a
 unique name, and may be referred to by using the label
 MEN_name which is XDEFfed by the
 WINDOW macro, and may be XREFfed where
 required.
A Window Definition consists of one or more layouts, each
 appropriate for a different size of window. One of these is selected
 by the WM.SETUP routine for copying into the Working
 Definition, depending on the size requested. Each layout is given a
 unique letter when introduced by the SIZE_OPT macro: when the SETWRK macro is invoked
 at the end of the menu assembly, symbols of the form
 WWletter.name are XDEFfed, defining the
 space required for the Working Definition for each layout. These may
 be referred to in other modules by declaring the symbol with an
 XREF.S directive. Different layouts for a window may be
 put in different files: the main definition is introduced with the
 WINDOW macro, and has the various layouts
 introduced with the SIZE_OPT macro: the external layout
 definition(s) start with the XLAYOUT macro, and
 define the layouts specified by calls to the LAYOUT macro.
In addition to creating the Window Definition, the macros also
 keep track of the size of Status Area required. In principle, the
 statuses of the items in a window may be static, so that when the
 window is pulled down again previously selected options are still
 selected. To cater for this, the status blocks for a given window are
 defined as COMMON blocks of the required size: each
 layout defines its own blocks, but with the same name, so that when
 linked the largest version of each COMMON block is used.
 One COMMON block is defined for the base area and loose
 item status block, one for each menu status block and control block,
 and one for each item allocated space with a call to the ALCSTAT macro. By using the COMMON
 DUMMY option in the linker command file, no space is allocated
 in the application for the status areas, resulting in ROMable code.
 The global status area for all windows may then be put in the
 application's data space, if this is big enough, or in a
 suitably-sized piece of heap allocated when the application starts. If
 this area is always pointed to by (Address register) Ax, then the
 status area for a given window will be found at WST_name
 (A x), this label having been defined by an XREF.S
 directive. Note that this limits you to a maximum global status area
 size of 32k. Often A5 or A6 will be used to point to the global status
 area, as they are not used by the Window Manager.
The macros defined in the WMAN_MENU_MAC
 file are listed below.
4.3.3.1.1. ACTION

ACTION name
Generates a relative pointer to an action routine. This is
 external to the menu definition, and should have the label
 MEA_[name].

4.3.3.1.2. ALCSTAT

ALCSTAT name, space
This reserves some extra space in the global status area,
 which can be accessed at the offset MV_[name] from the base of this
 global status area: this offset will always be even. The amount of
 space reserved is given by the value of the space parameter. The
 offset should be referred to in the code by using the
 XREF.S directive.

4.3.3.1.3. APPN

APPN name
Generates a relative pointer to the application sub-window
 list for this layout. This should have the label MAW_[name] and will
 have an XREF generated for it if CLAYOUT has the value "*", which implies an
 externally-defined layout. If CLAYOUT does not have the value "*", then a
 variable with the name MAW_[name] is updated: if it already exists,
 then this application sub-window list is used by several layouts,
 and the value of CLAYOUT is appended to
 it. If the variable is undefined, then it is initialised to the
 current value of CLAYOUT.

4.3.3.1.4. ARROW

ARROW colour
Define the colour of the arrows in the pan or scroll arrow
 rows.

4.3.3.1.5. A_CTRL

A_CTRL name, dirn
Introduces an application sub-window control definition,
 defining a pointer, relative to the start of the window status area,
 where the section control block starts, and generating an externally
 accessible offset WC[dirn]_[name] which may be used by coding a
 suitable XREF.S directive in the code wishing to use
 it. The size of section control block is given by the maximum number
 of sections, which will have been previously defined by a call to
 the CTRLMAX macro, and
 kept in the variable NC[dirn]_[name].

4.3.3.1.6. A_END

A_END
This generates the termination for an application sub-window
 list: it is not interchangeable with I_END etc., as the
 terminators are different.

4.3.3.1.7. A_OBJE

A_OBJE name
This marks the end of a menu sub-window object list, defining
 the label MOB_[name] so that the row list can point to the end of
 the list. It also defines a COMMON block for the menu
 item statuses, which may be found at the offset MST_[CURRA] from the base of the
 global status area: [CURRA] is the name of the
 application sub-window currently being defined.

4.3.3.1.8. A_MENU

A_MENU
Introduces the menu definition section of an application
 sub-window, and generates a relative pointer to the menu status
 block.

4.3.3.1.9. A_RLST

A_RLST name
This introduces a menu sub-window row list, and labels it
 MRW_[name]. It also sets the value of CLAYOUT to the value of
 the variable MRW_[name].

4.3.3.1.10. A_SLST

A_SLST name, dirn
This introduces a menu sub-window spacing list, and labels it
 MS[dirn]_[name]. It also sets the value of CLAYOUT to the value of the variable
 MS[dirn]_[name]. The parameter dirn may take the values "X" or
 "Y".

4.3.3.1.11. A_WDEF

A_WDEF name
This introduces an application sub-window definition, and
 labels it MAD_[name] . It also sets the value of CLAYOUT to the value of the variable
 MAD_[name], and CURRA to [name].

4.3.3.1.12. A_WINDW

A_WINDW name
This generates a relative pointer to an application sub-window
 definition, which must be internal to this layout. The label used is
 MAD_[name], this being generated by the A_WDEF macro. A
 variable MAD_[name] is also set to the current value of CLAYOUT.

4.3.3.1.13. A_WLST

A_WLST name
This macro introduces an application sub-window list. It
 generates a label MAW_[name] and reads a new value for the variable
 CLAYOUT from the variable MAW_[name], which
 will have been defined by a call to APPN or LAYOUT.
The effect of this is to ensure that the list can be pointed
 to from elsewhere in the definition, and that the space required for
 the application sub-windows can be added up in the appropriate
 layout variable.

4.3.3.1.14. BAR

BAR background, block
Define the colours of the "thermometer" bar to the right or
 bottom of an application sub-window. The visible part of the window
 is represented as a bar of the block colour, on a bar representing
 the whole height or width of the menu, of the background
 colour.

4.3.3.1.15. BLOB

BLOB name
Generates a relative pointer to a blob definition. This is
 external to the menu definition, and should have the label
 MEB_[name].

4.3.3.1.16. BORDER

BORDER size, colour
Generates the definition of a border to be put around an item
 when the pointer is pointing to it. Usually followed by one or three
 IATTR definitions
 defining the attributes of the item itself.

4.3.3.1.17. CSIZE

CSIZE xsize, ysize
This defines the character size for an information item: the
 usual range of xsize from 0 to 3 and ysize from 0 to 1
 applies.

4.3.3.1.18. CTRL

CTRL name
Generates a relative pointer to an application sub-window
 control routine. This is external to the menu definition, and should
 have the label MEC_[name].

4.3.3.1.19. CTRLMAX

CTRLMAX xsects, ysects
This defines the maximum number of sections into which an
 application sub-window may be split. It also keeps a record of these
 numbers in the variables NCX.[CURRA] and
 NCY.[CURRA], so that when the control definition
 is encountered the correct amount of space can be allocated in the
 status area.

4.3.3.1.20. DRAW

DRAW name
Generates a relative pointer to an application sub-window
 drawing routine. This is external to the menu definition, and should
 have the label MED_[name].

4.3.3.1.21. HELP

HELP label
Generates a relative pointer to the help definition. Since the
 meaning of this pointer is dependent on the application, the label
 is used directly, without adding a prefix: the label is assumed to
 be external, so an XREF is generated.

4.3.3.1.22. IATTR

IATTR paper, ink, blob, pattern
Generates part of a definition of the attributes to be used
 when drawing loose menu items, index items or menu sub-window items.
 The blob and pattern are external, with labels MEB_[blob] and
 MEP_[pattern] respectively.
Loose and sub-window items should have three sets of
 attributes, one for each of the three possible statuses unavailable,
 available and selected.
Index items do not have variable status, so only need one set
 of attributes.
The object to be drawn is combined with one or more of the
 attributes, depending in its type:
 Object type Attribute
 paper ink blob pattern
 TEXT Y Y
 SPRITE Y
 BLOB Y Y
 PATTERN Y Y

4.3.3.1.23. IBAR

IBAR size, spacing [,szscale, spscale]

Define the size and spacing of an index bar. Optionally these
 may be scaled. The spacing is measured above or to the left of the
 application sub-window.

4.3.3.1.24. ILST

ILST name
Generates a pointer to an index object list, which is internal
 to the definition and must be labelled MOB_[name]. The variable of
 the same name is given the value of CLAYOUT.

4.3.3.1.25. INFO

INFO name
Generates a relative pointer to the information sub-window
 list for this layout. This should have the label MIW_[name] and will
 have an XREF generated for it if CLAYOUT has the value
 "*". If CLAYOUT does not have the value "*", then a
 variable with the name MIW_[name] is updated in the same way as in
 the APPN macro.

4.3.3.1.26. INK

INK colour
This macro defines the ink colour for an information
 item.

4.3.3.1.27. ITEM

ITEM number
Defines the item number for a loose or menu object: more than
 one object may share an item number, in which case they will share a
 status byte and therefore all be drawn with the same status.
If the value of the variable CURRA is not "*", then it is assumed that
 the object being defined is in a menu sub-window, and the maximum
 item number for that sub-window is updated if required, this being
 kept in the variable MST_[CURRA]: otherwise the variable
 MAXITEM is updated. In this way it is
 possible to have "holes" in the item numbers, but still get the
 correct size of status area allocated.

4.3.3.1.28. I_END

I_END
Generates an end-of-list marker for information sub-window and
 object lists.

4.3.3.1.29. I_ITEM

I_ITEM
This introduces an information item: it is this macro that
 adds to the space requirements for the current layout(s), given by
 the value of the variable CLAYOUT.

4.3.3.1.30. I_OLST

I_OLST name
This introduces an information object list, generating a label
 MIO_[name]. The variable CLAYOUT is set to the value of the variable
 MIO_[name].

4.3.3.1.31. I_WINDW

I_WINDW
This introduces an information sub-window: it is this macro
 that adds to the space requirements for the current layout(s), given
 by the value of the variable CLAYOUT.

4.3.3.1.32. I_WLST

I_WLST name
This macro introduces an information sub-window list. It
 generates a label MIW_[name] and reads a new value for the variable
 CLAYOUT from the variable MIW_[name].
The effect of this is to ensure that the list can be pointed
 to from elsewhere in the definition, and that the space required for
 the information sub-windows can be added up in the appropriate
 layout variable.

4.3.3.1.33. JUSTIFY

JUSTIFY xjst, yjst
Define the justification required for an item: an item may be
 centred in the area available or be positioned a fixed distance from
 either margin. A parameter value of zero requests a centred object,
 a positive non-zero value is an offset from the left or top, and a
 negative value an offset from the right or bottom.

4.3.3.1.34. LAYOUT

LAYOUT letter, [info], [loos], [appn]

This specifies one of the layouts that is to be defined in
 this file, in a similar way to the SIZE_OPT macro, but is used in a separate
 layout file, after the XLAYOUT. It should
 not be used in a main definition file.
The names of the information sub-window list, loose item list
 and application sub-window list may be omitted if the layout does
 not contain such a list, but the commas must be coded so that the
 correct internal labels are generated.

4.3.3.1.35. LOOS

LOOS name
Generates a relative pointer to the loose item list for this
 layout. This should have the label MLI_[name] and will have an
 XREF generated for it if CLAYOUT has the value "*". If CLAYOUT does not have the value "*", then a
 variable with the name MLI_[name] is updated in the same way as in
 the APPN macro.

4.3.3.1.36. L_END

L_END
Terminates a loose item list, and generates a
 COMMON block definition for a window status area big
 enough for the maximum loose item number, given in the
 MAXITEM variable.

4.3.3.1.37. L_ILST

L_ILST name
This macro introduces a loose item list. It generates a label
 MLI_[name] and reads a new value for the variable CLAYOUT from the variable MLI_[name]. In
 addition, the variable MAXITEM is initialised to zero, and
 CURRA to "*".
The effect of this is to ensure that the list can be pointed
 to from elsewhere in the definition, and that the space required for
 the loose items will be added up in the appropriate variable.

4.3.3.1.38. L_ITEM

L_ITEM [name, number]
This introduces a loose item: it is this macro that adds to
 the space requirements for the current layout, given by the value of
 the variable CLAYOUT. If name and
 number are supplied, a label MLI.[name] is defined and set to the
 value of number, also a label MLO.[name] which is the position of
 the item in the list, counting from 0.

4.3.3.1.39. MENSIZ

MENSIZ ncols, nrows
This defines the size of a menu sub-window in terms of rows
 and columns, and therefore the sizes of the spacing lists, index
 item lists (if present), and row list.

4.3.3.1.40. OBJEL

OBJEL [name]
Introduces a menu sub-window object definition: if the name is
 supplied then the object is given the label MOB_[name] and CLAYOUT is given the value of the MOB_[name]
 variable.

4.3.3.1.41. OLST

OLST name
Generate a relative pointer to an information object list.
 This must be internal to the definition, and have the label
 MIO_[name]. A variable of the same name is defined to have the same
 value as the variable CLAYOUT, so that the space occupied for the
 object list can be attributed to the appropriate layout.

4.3.3.1.42. ORIGIN

ORIGIN xpos, ypos [,xscale, yscale]
Generates a two word origin definition for a window,
 sub-window or object. A window's origin specifies the point within
 it where the pointer should be placed when the window is drawn -
 this will be combined with the current pointer position to decide
 the absolute origin of the window.
The origin of a sub-window or object is always specified
 relative to the window containing it. Optionally a scale factor may
 be provided to specify how the origin should be changed if the
 window is bigger than expected. See Section 4.2.2.1, “Window Definition” of Section 4.2, “Data Structures” for details on how scale
 factors work.

4.3.3.1.43. PATTERN

PATTERN name
Generates a relative pointer to a pattern definition. This is
 external to the menu definition, and should have the label
 MEP_[name].

4.3.3.1.44. POSN

POSN name, xsize, ysize [,xscale, yscale]

Generates a scaled co-ordinate pair in the same way as the
 ORIGIN macro, and
 labels the data MPS_[name]. This label is XDEFfed so
 that the co-ordinates can be used from other parts of the
 program.

4.3.3.1.45. ROWEL

ROWEL start,end
Generate one element of a row list, consisting of a pair of
 relative pointers to the start and end menu sub-window objects: the
 start pointer points to the first object, the end points just after
 the last. The labels used must be internal to the definition, and
 have the symbols MOB_[start] and MOB_[end]. Two variables of the
 same names are given the current value of the CLAYOUT
 variable.

4.3.3.1.46. RLST

RLST name
Generates a relative pointer to a rowlist, which is internal
 to the definition and must be labelled MRW_[name]. A variable of the
 same name is given the current value of CLAYOUT.

4.3.3.1.47. SELKEY

SELKEY [name]
Generate a select key for a loose or menu item. The value of
 the select key is an external symbol MEK.[name]: this allows the
 programmer to have one file containing all select keys (and text),
 which is then the only file that needs to be changed to make foreign
 language versions of the program. If name is not supplied, a select
 key of 0 is defined, which can never occur (it is trapped out by the
 Window Manager).

4.3.3.1.48. SETR

SETR name
Generates a relative pointer to an application sub-window
 setup routine. This is external to the menu definition, and should
 have the label MEM_[name].

4.3.3.1.49. SETWRK

SETWRK
This macro must always be coded at the very end of a window or
 layout definition: it defines the external symbols giving the space
 required for the working definitions of the various possible
 size-dependent layouts. In addition it generates a
 COMMON section declaration and external definition for
 any extra space required in the global status area as a result of
 calls to ALCSTAT.

4.3.3.1.50. SIZE

SIZE xsize, ysize [,xscale, yscale]
Generates a two-word size definition for a window, sub-window
 or object. The size of a window is the actual area that can be used,
 any border defined is added to the outside.
Optionally a scale factor may be provided to specify how the
 size should be changed if the window is bigger than expected. See
 Section 4.2.2.1, “Window Definition” of Section 4.2, “Data Structures” for details on how scale
 factors work.

4.3.3.1.51. SIZE_OPT

SIZE_OPT letter | *
This introduces an entry in the repeated part of the window
 definition: each entry gives a possible size that the window can
 have, and pointers to the various parts of the layout for this
 size.
The value of the parameter is kept in the variable CLAYOUT for future use.
If the * option is coded, the layout is assumed to be
 external, and XREFs will be generated for the pointers
 to the loose item list, information sub-window list, and application
 sub-window list.
If a letter is coded, then the layouts are assumed to be in
 the current file. In this case the variables WW[letter].[CURRW] and
 WS[letter].[CURRW] are initialised to suitable
 values: these are used during the later stages of the menu
 definition to calculate the sizes required for the working
 definition and status area for this layout. The [letter] is also
 appended to the WSIZES variable.

4.3.3.1.52. SOFFSET

SOFFSET xoff, yoff
This defines the offset of the top left object from the top
 left of a menu sub-window, so you don't have to squash everything up
 into the top left corner.

4.3.3.1.53. SPARE

SPARE
Generates a null byte to fill up spare space. Only required
 after the definition of an application sub-window's select
 key.

4.3.3.1.54. SPCEL

SPCEL gap, size
This generates one element of a row or column spacing list,
 defining the horizontal or vertical hit size of a column or row, and
 the gap between the column or row and the next.

4.3.3.1.55. SLST

SLST xnam, ynam
This generates two relative pointers to the X and Y spacing
 lists, which should be labelled MSX_[xnam] and MSY_[ynam]. Two
 variables of the same names are set to the current value of CLAYOUT.

4.3.3.1.56. SPRITE

SPRITE name
Generates a relative pointer to a sprite definition. This is
 external to the menu definition, and should have the label
 MES_[name].

4.3.3.1.57. S_END

S_END
Terminates the list of layouts in the repeated part of a
 window definition.

4.3.3.1.58. TEXT

TEXT name
Generates a relative pointer to a string. This must be
 external to the menu definition, and should have the label
 MET_[name]. This allows the programmer to have one file containing
 all text (and select keys), which is then the only file that needs
 to be changed to make foreign language versions of the
 program.

4.3.3.1.59. TYPE

TYPE code
Specifies the type of a loose, information or menu object. The
 value of code may be 0 for a text item, 2 for a sprite and so on:
 suitable symbols are defined in the WMAN_KEYS
 file.

4.3.3.1.60. WATTR

WATTR shadow, border_size, border_colour, paper

Generates data describing the overall colour of a window or
 sub-window. The shadow is ignored in the case of sub-windows. The
 border_size is added to the specified window size.

4.3.3.1.61. WINDOW

WINDOW name
Generates an externally accessible label MEN_[name] which
 points to the Window Definition.
The variable CURRW is set to [name] so that
 various unique symbols may be defined and XDEFfed at a
 later stage.
The variable WSIZES is set to the null
 string: this is added to by SIZE_OPT, and used in SETWRK to generate XDEFs for
 each possible size.

4.3.3.1.62. XLAYOUT

XLAYOUT name
This introduces a set of layout definitions in a similar way
 to WINDOW introducing the main part of a
 window definition. It is associated with the appropriate main
 definition by having the same [name], which is assigned to the
 CURRW variable as in WINDOW.

4.3.4. Text Macros

The file WMAN_TEXT_MAC contains a set of
 macros which are used for defining text strings, often for use in menus.
 Several different flavours are provided, depending on the use to which
 the text is going to be put. The merit of this approach is that all text
 used in an application may be put into one file, and different versions
 of this file with the text in different languages linked with the rest
 of the application (all of which should be language-independent) to
 produce foreign language versions.
All the macros take one or more string
 parameters. Each of these should consist of of the characters you wish
 to appear in the text, enclosed in braces {}. This is a convention used
 by the GST Macro Assembler to allow the use of strings with spaces in
 them as macro parameters. All the macros use this parameter to generate
 a QDOS format string at an even address with a 1-word character count at
 the beginning.
Note

You cannot use the open square bracket character "[" either
 within a string or as a select key when you are using the GST Macro
 Assembler, as this character is a l w a y s interpreted as the
 beginning of a macro substitution. If you do need to use the open
 square bracket, you will need to code the ASCII value (91 or $5B) in a
 DC.x directive of your own making.

The MKTEXT macro uses the variables
 MKT.PRM and MKT.PRMX, so you should avoid using these
 variables when using the text generating macros.
Label and variable prefixes used by these macros are as
 follows:
Prefix External Var Use

MEK. Y Item select key definition
MET_ Y Text string label
MET. Y Text string length/2 in pixels
In the following macro definitions, square brackets - [] - in the
 first line enclose an optional parameter, braces - { } - enclose a
 parameter that may be repeated more than once. Within the
 body of a definition, the square brackets signify
 the value of a supplied parameter, for example, in
 the description of MKSELK below, we see
 square brackets being used as follows:
Generates an external symbol MEK.[label] whose value
In this example, the text '[label]' would be replaced by the data
 passed in the label parameter to the
 macro.
4.3.4.1. MKSELK

MKSELK label, selkey
Generates an external symbol MEK.[label] whose value is that
 given by the one character string passed in selkey. If the character
 was in the range "a" to "z" then the upper case equivalent is used, as
 select keys are required to be defined in upper case. This macro is of
 use when defining a select key for a graphics object such as a
 sprite.

4.3.4.2. MKSTR

MKSTR string
This is the simplest of the macros. It generates a QDOS string
 but no extra information.

4.3.4.3. MKTEXT

MKTEXT label {,string}
This macro is used to generate a large block of text which has
 to be defined over many lines of source code. The resulting single
 string is labelled MET_[label]. All parameters after the label name
 should be strings enclosed in braces, and these are concatenated to
 produce the result. If you wish to force a newline at any point then
 you may code a backslash character "\" as the last character of any
 string - this will then be translated into a newline character (ASCII
 value 10 or $0A). A backslash within a string is not
 translated.

4.3.4.4. MKTITL

MKTITL label, string
Generates a string for use as a large title. Two external
 symbols are defined, MET_[label] labels the string itself and
 MET.[label] gives half the length of the string, in pixels, if written
 out with CSIZE 2,n. This symbol may be referred to by an
 XREF.S directive and used to centre the title in an
 information sub-window. Another macro is used for strings written with
 a smaller character size, as the GST Macro Assembler does not allow
 multiplication or division of externally defined symbols.

4.3.4.5. MKTITS

MKTITS label, string
Generates a string for use as a small title. Two external
 symbols are defined, MET_[label] labels the string itself and
 MET.[label] gives half the length of the string, in pixels, if written
 out with CSIZE 0,n. This symbol may be referred to by an
 XREF.S directive and used to centre the title in an
 information sub-window. Another macro is used for strings written with
 a larger character size, as the GST Macro Assembler does not allow
 multiplication or division of externally defined symbols.

4.3.4.6. MKXSTR

MKXSTR label, [selkey], string
Generates a string for use as a loose menu item or menu object.
 The string itself is defined as usual, with the symbol MET_[label]
 being used to refer to it. Optionally a select key may be defined by
 specifying a non-null value for the selkey parameter. This should be a
 one character string, preferably enclosed in braces for consistency.
 If supplied, the symbol MEK.[label] is defined to have the value of
 this character: if the character is in the range "a" to "z" then the
 upper case equivalent will be used.

4.3.5. Index of macros

The macros are summarised in alphabetical order, together with
 which file they are defined in and a short description of the structure
 each generates. Those marked MENU are in the file
 WMAN_MENU_MAC, those marked TEXT are in the file
 WMAN_TEXT_MAC.
ACTION MENU pointer to action routine
ALCSTAT MENU space in global status area
APPN MENU pointer to application sub-window list
ARROW MENU arrow colour for pan/scroll bars
A_CTRL MENU start of control definition
A_END MENU end of application sub-window list
A_MENU MENU start of menu definition
A_OBJE MENU end of menu object list
A_RLST MENU start of menu row list
A_SLST MENU start of menu spacing list
A_WDEF MENU start of application sub-window
A_WINDW MENU pointer to application sub-window
A_WLST MENU start of application sub-window list
BAR MENU pan/scroll "thermometer" colours
BLOB MENU pointer to blob
BORDER MENU border size and colour for current item
CSIZE MENU character size for information text
CTRL MENU pointer to control routine
CTRLMAX MENU maximum number of control sections
DRAW MENU pointer to sub-window drawing routine
HELP MENU pointer to help definition
IATTR MENU item status attributes
IBAR MENU size and spacing of index items
ILST MENU pointer to index item list
INFO MENU pointer to information sub-window list
INK MENU ink colour for information text
ITEM MENU item number for loose or menu item
I_END MENU end of information window or object list
I_ITEM MENU start of information object
I_OLST MENU start of information object list
I_WINDW MENU start of information sub-window
I_WLST MENU start of information sub-window list
JUSTIFY MENU justification rules for loose or menu item
LAYOUT MENU start of external layout definition
LOOS MENU pointer to loose item list
L_END MENU end of loose item list
L_ILST MENU start of loose item list
L_ITEM MENU start of loose item
MENSIZ MENU size of menu in columns/rows
MKSELK TEXT item select keystrokes
MKSTR TEXT QDOS string, no label
MKTEXT TEXT multi-line text
MKTITL TEXT large title string
MKTITS TEXT small title string
MKXSTR TEXT external string with select keystroke
OBJEL MENU start of menu object definition
OLST MENU pointer to information object list
ORIGIN MENU origin of window or object
PATTERN MENU pointer to pattern
POSN MENU externally-accessible ORIGIN
ROWEL MENU row list element
RLST MENU pointer to row list
SELKEY MENU select keystroke for loose or menu item
SETR MENU pointer to setup routine
SETWRK MENU end of entire window definition
SIZE MENU size of window or object
SIZE_OPT MENU start of internal layout definition
SOFFSET MENU offset from top left of menu sub-window
SPARE MENU spare padding byte
SPCEL MENU spacing list element
SLST MENU pointers to spacing lists
SPRITE MENU pointer to sprite
S_END MENU end of layout list
TEXT MENU pointer to text
TYPE MENU object type
WATTR MENU overall window attributes
WINDOW MENU start of entire window definition
XLAYOUT MENU start of external layout definitions

Part IV. Miscellaneous

The sections in Part IV present various other features, utilities
 and information about the Pointer Environment.

Chapter 5. Pointer Environment Changes

You are supplied with two versions of both the Pointer Interface and the Window Manager, of different vintages. Those loaded by the
 BOOT file are the more recent versions, and have more features than the old
 versions. The older versions are as shipped with QRAM v1.07, and are thus
 typical ofthe versions used by the majority of owners of QRAM. Should you
 wish to software for sale, you can either write for these older versions,
 accepting their restrictions, or for the newer versions, in which case some
 existing users of the Pointer Environment will be unable to use your
 software. A third option is to enter into a licensing agreement with QJUMP
 which would allow you to include the upgraded version of the Pointer Environment with your software in return for a
 suitable fee: as we intend the Pointer Environment to set a new standard for
 QL software, such a fee is unlikely to be excessive (end of sordid
 commercial!).
The following lists summarise the changes in the Pointer Toolkit, the
 Pointer Interface and the Window Manager.
5.1. Pointer Toolkit Changes

	Version	Changes
	v0.01
	Original released version.

	v0.02
	RD_PTR of window with no loose or menu items in
 allowed.
MK_LIL with exactly one sprite/blob/pattern
 type item now works.

	v0.03
	CH_WIN now returns size change
 correctly.
RD_PTR of window with more than one menu
 sub-window works (used to return as if an error had occurred, with
 D0=0).

	v0.04
	MS_SPD doesn't smash memory.

	v0.05
	Timeout set in MS_SPD, MS_HOT.
CH_ITEM
 works for menu sub-windows.

	v0.06
	SWDEF doesn't reference address -4.
WREST
 added.

	v0.07
	Correct number of procs.

5.2. Pointer Interface Changes

	Version	Changes
	v1.06	Key debounce improved.

	v1.07	First internal mouse version.
Closing
 last window in particular mode now restores all windows in other
 mode.

	v1.08	Avoids problems with closing unused consoles (It used
 to be able to lose the keyboard queue.)
Improvements
 to screen restoration on window close.

	v1.09	Prevents channel 0 from being
 closed.
Mouse movement stuffs cursor keystrokes into
 keyboard queue.
SD.WDEF (WINDOW from SuperBASIC) now
 resets cursor position.
Multicolour patterns for blobs
 made usable.

	v1.10	"Top" secondary is now the most recent one, not the
 first one.
New TRAP IOP.FLIM, D0=$6C to find
 permissible limits for window.
New TRAPs IOP.SVPW/RSPW
 D0=$6D/6E to save/restore part windows.
IOP.RPXL now
 implemented: new spec. includes scanning.
FWIND now
 only detects managed secondaries of managed
 primaries.
IOP.OUTL can now move a
 secondary.
IOP.OUTL now deals with secondaries that
 fall outside a re-defined primary (now set to primary's hit
 area).
Odd shadow widths evened
 up.
IOP.SPTR now only sets new position, so it works
 properly.
Unmanaged secondaries now limited to managed
 primary outline, not whole screen.
IOP.PICK ignores
 lock. IOP.PICK allows keyboard queue to be grabbed, so cursor
 appears OK.
Hitting DO mouse button in keyboard window
 stuffs an ENTER.
Both buttons on mouse stuffs one or
 two character string.
Dropping blobs under sprite in
 MODE 8 fixed.
Dynamic sprites
 implemented.
Pattern outside sprite mask is now XORed
 into screen, not ORed.
Extending an unmanaged locked
 primary's outline by opening a larger secondary now
 works.

	v1.12	First PTR_GEN.

	v1.13	Move window on odd pixel boundary/odd width now
 permitted (MODE 4).

	v1.14	ESC while doing special RPTR now gets through (got
 lost in vv1.xx-1.13).

	v1.15	FWIND gets X size of sub-window correct, it was one
 too big

	v1.16	RPTR signals SCHED to make pointer
 visible.

	v1.17	First Atari ST Pointer Interface.

	v1.18	Patched to enable dropping of sprites and blobs which
 are larger than the pointer sprite.
Save areas now
 owned by the same job as the channel, with null
 driver.
Dummy CON is ROM CON, not current
 CON.

	v1.19	CTRL F5 during MODE now works (!)
RPIXL
 can now scan left/right for a given colour
 correctly.
Mode change between window open and use is
 now OK.
Other dummy channels diverted via our linkage
 block, so MODE doesn't spot them.
Cursor status
 cleared before MODE window redraws.
RPTR does not
 signal SCHED so much - see V1.16.

	v1.20	All PICKs now move pointer to primary centre, not
 just CTRL C.

	v1.21	Window and border changes clear scheduler
 flag.

	v1.22	Pick windowless JOB now OK on ATARI.

	v1.23	CKEYON and CKEYOFF added to control action of cursor
 keys.
WWA.KFLG added to window attributes for the same
 reason.
Type ahead enabled within a
 window.
Third attempt at Thor 1
 version.
Keypress suppressed on window
 change.

	v1.24	Thor 1 version allows Thor patch to be used before
 loading Lightning.

	v1.25	Thor 1 version supports all three buttons on the Thor
 mouse.
Failure of DEL_DEFB introduced in Thor mods to
 v1.23 fixed.

	v1.26 (internal)	Wake event generated when 'picking' with DO button or
 if required in IOP.PICK trap (D2=K.WAKE).

	v1.27 (internal)	Wake events improved.
Keyboard queue of
 locked, busy or no window stripped.

	v1.28	Escape from window identify restored (problem in 1.27
 only)

	v1.29	CTRL C spurious wake removed.
Problem
 with rapid "CTRL C"s removed (introduced in version
 1.23).
HIT while moving restored (missing since
 V1.23)

	v1.30	PICK to center of top secondary.
Pointer
 movement slowed while disk etc busy.

	v1.31	Bad driver for save area corrected.
No
 wake-up on cursor key strokes.

	v1.32	Allocates enough room for a 64x48 pointer
 sprite.
Improvements to out of window
 keystrokes.

	V1.33	Improved dragging. Pointer movement restored from
 v1.30.
Checks for cursor overlap on
 RHS.

	V1.34	Pointer movement slowed again.

	V1.35	Cursor suppression algorithm improved.

	V1.36	Corrected a fault in the V1.35 cursor suppression
 algorithm.
Pointer limiting introduced for
 dragging.

	V1.37	Option to Freeze jobs on locking
 window.

	V1.38	Close removes Fill buffer. Both ENTER keys on ST
 cause DO.

	V1.3	IOP.RPXL removes pointer sprite.

	V1.40	Higher RES mode supported

	V1.41	Higher RES corrections

	V1.42	Sprite / Blob dropping problems introduced in V1.40
 fixed.

	V1.43	Window area for non-well behaved windows can exceed
 512x256.

	V1.44	Some changes to sprite suppression /
 appearance

	V1.45	More changes to sprite suppression /
 appearance

	V1.46	IOW.SSIZ accepts -1,-1 for no change in size (size
 enquiry)

	V1.47	Window Move $84 has invisible sprite

	V1.48	Partial save / restore corrected for non-QL screen
 sizes.
Dragging restored (V1.45) even when pointer is
 being reset

	V1.49	Sprite remove checks updated for wider
 screens.

	V1.50	Partial save/restore updated for monochrome
 mode.

	V1.51	Sprite suppression / appearance restored to old
 style.

	V1.52	Open CON (copyc) "out of memory" error recovery
 fixed.

	V1.53	Initialisation works even if no RTC.

	V1.54	Modification of Atari polling routine.

	V1.55	IOP.RPXL corrected for non QL screens.

	V1.56	IOP.SVPW memory allocation modified - should have no
 effect.

	V1.57	Corrections to V1.56 for QDOS. MODE
 improvements.

	V1.58	Corrections to V1.55.

5.3. Window manager Changes

	Version	Changes
	V1.04
	WM.DRBDR added.

	V1.05
	Zero text pointers allowed, information blobs
 corrected.

	V1.06
	CHWIN returns size change.
Initial
 pointer set rel hit area.
Fixed window sizes accepted
 by SETUP.
BREAK detected.
Pending newline
 problems in information windows removed.
Menu
 sub-window paper set before scrolling.

	V1.07
	Lots of new routines.
SSCLR and ARROW
 made regular fmt.

	V1.08
	CHWIN fixed for secondaries/cursor
 keys.

	V1.09
	Non-cleared info windows allowed.
Vectors
 $48 to $74 added.

	V1.10
	Setup correct number of columns >
 3.
Set pointer position correctly in odd position
 application sub-window.

	V1.11
	Returns user defined message if no
 PTR.

	V1.12
	Fractional scaling bug fixed.

	V1.13
	WM.MSECT extended to accept cursor keys, SPACE and
 ENTER in arrow rows.
DO/ENTER in arrow row of single
 item menu section made equivalent to
 HIT/SPACE.
Cosmetic improvements to menu and current
 item handling.

	V1.14
	WM.DROBJ updated to draw sprites 1 to 7 in the right
 place.

	V1.15
	Sleep and wake event keystrokes added to
 WM.RPTR.
Characters in the range $09 to $1f recognised
 in WM.RPTR.

	V1.16
	Improved wake. Control codes less than 9
 accepted.
WM.RNAME, WM.ENAME return terminator in D1
 as it should.

	V1.17 (internal)
	Pan/scroll bars at last.

	V1.18 (internal)
	Pan/scroll arrows made optional, bars tidied
 up.

	V1.19 (internal)
	WM.SWAPP corrected for application windows
 >0.
Improvements to out of window
 keystrokes.
WM.CHWIN now allows cursor keys for pull
 down window moves - regardless of circumstances.

	V1.20 (internal)
	Out of window wake accepted again (went in
 1.19).

	V1.21 (internal)
	DO anywhere in window accepted.

	V1.22 (internal)
	Constant Spacing in menus.

	V1.23 (internal)
	Repeated selection key handled.
Dragging
 on pan/scroll bars implemented.

	V1.24
	Improvements to FSIZE for windows variable in two
 dims.

	V1.25
	Further improvements to pan/scroll
 bars.

	V1.26
	WM.STLOB status set OK.
WM.UPBAR
 added.

	V1.27
	WM.SWLIT now sets cursor position using
 justification.
WM.RNAME WN.ENAME start from cursor
 position.

	V1.28
	Pan/scroll bars with no sections cleared (V1.26,
 V1.27)

	V1.29
	Sub-window select keystroke (-1 in D2)
 re-introduced.

	V1.30
	Sub-window control routine called only on move or
 hit.
Window origin scaleable.
DRBAR can
 draw full length bar (V1.26-V1.29).
Event with no
 loose item accepted anywhere in window.

	V1.31
	Underline nth character of text type
 -n.
WM.MHIT returns D4=0 if action or control routine
 called.

	V1.32
	DO item action routine called on DO in
 window

	V1.33
	Text position set before character size set (prevents
 spurious scroll.

	V1.34
	Split cannot generate empty sections.

	V1.35
	Character size only set if
 non-standard.
Requires 1.46 Pointer.

	V1.36
	WDRAW corrected so as not to smash d5/d6 (error in
 1.35).

	V1.37
	Scaling of menu spacing.
Fixed menu
 spacing (first spacing negative) allowed in
 definition.

	V1.38
	Minimum limit for window rounded up to 4 pixel
 boundary.

	V1.39
	CHWIN does not smash D4 and D7 on
 move.

	V1.40
	Underline permitted for text starting with
 spaces.

	V1.41
	WM.RNAME WM.ENAME does not edit text longer than
 window.

	V1.42
	Extended WM.RNAME WM.ENAME.

	V1.43
	Set window resets character size to
 0,0.

	V1.44
	Pan and scroll bars corrected for border
 >1.

	V1.45
	V1.44 corrected.

	V1.46
	CSIZE reset when no info text item.

	V1.47
	Corrects V1.46.

Chapter 6. Utilities

Two utility programs are provided: they are ordinary
 EXECutable programs which may be started from SuperBASIC or Qram's FILES
 menu.
6.1. CVSCR

This utility converts a screen image file into a format suitable for
 loading into the PAINT demonstration program.
 It requests an input filename, and checks that it is exactly 32k long, and
 of an appropriate type (not executable). If the input file passes these
 tests, an output filename is requested, into which the processed file will
 be written: if this already exists then you are asked whether it is OK to
 overwrite it. Finally the program asks which screen mode the screen image
 was in, there being no way to determine this from the file, and writes out
 the converted file.
The conversion process adds a 10-byte header onto the start of the
 screen image data, consisting of a flag, X and Y sizes (in pixels), line
 length in bytes, and the mode flag.

6.2. STKINC

This utility is used to process SuperBASIC programs which use the
 Window Manager facilities of the Pointer Toolkit, and have been compiled
 using v3.12 or earlier of the Q_Liberator compiler. It is not required
 with v3.21 onwards - if you have this or a later version then you can
 compile and run a program using the Window Manager in exactly the same way
 as any other. STKINC fixes the problem caused
 by the Window Manager using more stack than Q_Liberator provides, by
 increasing the provision. This modification needs to be done in the file
 header, the compiled code and the run-time system, so the run-time system
 must have been included in the object file. One filename is requested, and
 the file is converted in place as no size change is involved. The program
 will usually notice if the file is not a Q_Liberated object file including
 the run-time system, and complain.

6.3. FIXPF

This utility takes the form of a SuperBASIC procedure, and may be
 used to restore the ROM version of any built-in procedure or function. If
 required, it should be loaded into the resident procedure area by your
 BOOT file, as described in Section 1.3, “Sample BOOT programs”.
FIXPF should never be needed!
 Unfortunately some packages "fix bugs in" or "improve on" the way
 SuperBASIC works by re-defining existing ROM routines, and in the process
 cause more problems than they cure. An example is the way the
 RESPR function can be re-defined to allocate space in
 the common heap, which "avoids the problem" of not being allowed to
 reserve more space in the resident procedure area once jobs are running.
 It is also very dangerous, as the heap space could be returned and
 re-used, resulting in a crash when procedures which were in that space are
 called. We have also seen examples of RESPR being
 re-defined within a program: when that program goes away, taking the new
 RESPR with it, you get problems.
You can even use FIXPF on SuperToolkit
 commands if you like! If you find that the "improved" versions of
 SAVE and LOAD keep using the
 defaults to save or load from the wrong device, you could
 FIXPF them so they need an exact filename, as
 before. This would also get rid of the "File already exists - OK to
 overwrite?" message. The syntax of the procedure is:
 FIXPF 'name'
The quotation marks are required, as you can't use procedures as
 parameters. The procedure or function name should be an original QL ROM
 routine. You can FIXPF a routine as often as
 you like without causing problems.
Known candidates for being FIXPFed are
 any re-defined versions of RESPR, and the
 SPEEDSCREEN version of MODE
 when the Pointer Interface is installed. The Pointer Interface takes care
 of all MODE calls, not just SuperBASIC ones as
 SPEEDSCREEN does, so the new version of
 MODE is unnecessary: in fact it can be dangerous - we
 have seen "total lockups" resulting from trying to pop up
 QRAM after the
 SPEEDSCREEN MODE has been
 used. This problem may be cured in future versions.

Chapter 7. Troubleshooting

7.1. Frequently Asked Questions

You may encounter problems with the Pointer Toolkit: the following
 list is by no means exhaustive, but covers some of the most likely causes
 of error.
Q:My program (or one of the demos) worked OK yesterday, but it
 doesn't work today.

A:This is usually caused by changing your
 BOOT file, or some other aspect of your
 system not directly connected with the program itself. In
 particular, you must set SuperBASIC's outline with an OUTLN #0... call to
 use all but the simplest parts of the Toolkit: if you don't, then
 the Pointer Interface will assume that SuperBASIC is "unmanaged",
 and not bother to check for sub-windows, user-defined pointers and
 so on.

Q:My program never returns from a "read pointer" call.

A:You can only use a "managed" window for pointer input: if
 you use an unmanaged window then the pointer always seems to be
 outside it. A window can be made managed by a call to
 OUTLN or DR_PPOS from
 SuperBASIC, or to the IOP.OUTL TRAP or
 WM.PRPOS vector in
 machine code.

Q:I don't get my special sprite, just the arrow.

A:User-defined sprites appear in sub-windows as a result of a
 call to SWDEF or IOP.SWDF to set up the appropriate data
 structure. Sub-windows will be ignored if their "parent" window or
 its primary (or both) are "unmanaged". They will also be ignored
 if there is a gap in the sub-window list, as the list is
 terminated by a zero pointer so a zero in the middle of the list
 is interpreted as an end of list marker.

Q:My program works when interpreted, but not when it's
 compiled.

A:SuperBASIC programs using the Pointer Toolkit can't be
 compiled with the Super/Turbocharge compilers, as they can't cope
 with array parameters or results returned in the parameter list.
 If compiled with Q_Liberator then you will have problems if you
 have used Window Manager routines but have not used the STKINC utility on the
 resulting program. The program will not work if its outline has
 not been set: see above.

Q:My compiled program starts off OK but then it
 crashes.

A:This is usually caused by not using the
 STKINC utility where appropriate: it
 can also happen if you haven't specified enough heap, stack or
 buffer space for the program.

Q:My machine code program crashes in the Window
 Manager.

A:This is very often caused by an incorrect window definition,
 which causes the setup routine WM.SETUP to use more space, when creating
 the working definition, than was anticipated. If this space is in
 the common heap then the following heap header will be corrupted,
 resulting in a system crash instantly or half an hour later,
 depending.

Q:One or more of the items doesn't get selected on its
 keystroke.

A:When specifying a keystroke to select a menu item, remember
 that the character must be specified in upper case, although it
 doesn't matter if the key pressed is upper or lower case. Remember
 also that event keys such as HELP, CANCEL and so on are translated
 to have very low key values such as 4, 3 and so on.

Q:I get an "out of range" error on a WINDOW command that worked before.

A:Managed secondary windows, which are needed for most of the
 examples, may not be positioned, by a call to either OUTLN or WINDOW, outside the outline of their
 primary window. The examples provided in
 QPTR assume the use of the
 BOOT file provided, which sets the
 SuperBASIC's outline to the whole screen - if you use a different
 BOOT file setting another outline then they
 may stop working.

Chapter 8. CONFIG Level 1

This chapter describes the original
 CONFIG version 1. Since the original manaul was
 published, CONFIG version 2 has been defined and
 introduced along with a MenuConfig utility which vastly
 improves the ease of configuring an application. See Chapter 9, CONFIG Level 2 for further details.
8.1. Configuration Information Specification

Many programs have the facility to configure themselves to set
 default working parameters. More usually the configuration is done by a
 separate program which modifies the working program file. Each program
 will have a different configuration program, and often different versions
 of the same program will have different configuration programs too. All
 this makes things very difficult for users.
It is proposed that a standard configuration system is used on all
 new programs and all new releases of existing programs. If this is done, a
 single configuration program can be used on any application software file
 even even when several application files are concatenated.
The advantages of this approach are obvious. There are two
 disadvantages. The first is that each program has to carry with it all the
 configuration information: this will make it larger. The second is that
 there is no simple means for doing this with compiled SuperBASIC programs.
 The first will not usually be a problem as it seems unlikely that a 32k
 program would have more than about 20 configurable items and their
 associated descriptions, this would add at most 3% to the program size.
 The second can be overcome with a little will.
There are two parts to this system: the first is a standard for the
 format of a configurable file, the second is a program to process files.
 There can be any number of programs to process files, from any number of
 suppliers. If the standards for the configurable file are adhered to, then
 any supplier's configuration program can be used on any (other) supplier's
 software.
The configuration consists of the following information:
 Configuration ID
 Configuration level
 Software name
 Software version
 List of
 Type of item (string, integer etc.) (byte)
 Item Selection keystroke (byte)
 Pointer to item
 Pointer to item pre-processing routine
 Pointer to item post-processing routine
 Pointer to description of item
 Pointer to attributes of item (item type dependent)
 End word (value -1)
As time goes by, additional types of item are likely to be added.
 This will mean that new versions of the configuration program will be
 required. These new versions will, of course, be able to configure all
 lower level configurable files. But, if a old configuration program is
 used, and the level specified in the configuration block is greater than
 the level supported by the configuration program, it will have to give up
 gracefully.
The configuration ID is word aligned and is the eight characters
 "<<QCFX>>", this is followed by two ASCII characters giving
 the configuration level (minimum "01"). The software name is a standard
 string and is followed by a word aligned version identification in a
 standard string (e.g. "1.13a"). The word aligned list of items
 follows.

8.2. Types Of Item

Level 01 supports 7 types of item. These are: string, character,
 code selection, code, byte, word and long word. Application specific types
 of item can be processed by treating them as strings which are handled
 entirely by an application supplied routine.
String (Type 0)
The form of a configurable string is a word giving the maximum
 string length, followed by a standard string. There should be enough
 room within the application program for the maximum length string plus
 one character for a terminator. There is a single word of attributes
 with bits set to determine special characteristics.
 bit 0 do not strip spaces
Character (Type 2)
A character is a single byte, if it is a control character, it
 will be written out as a two character string (e.g. ^A = $01). There is
 a single word of attributes with bits set to determine the possible
 characters allowed:
 bit 0 non printable characters
 bit 1 digits
 bit 2 lower case letters
 bit 3 upper case letters
 bit 4 other printable characters

 bit 6 cursor characters

 bit 8 control chars + $40, translated to control chars
Bit 8 is, of course, mutually exclusive with bits 0 to 7, although
 this is not checked. The configuration block in an application program
 must be correct.
Code (Type 4)
A code is a single byte which may take a small number of values.
 The attributes is a list of codes giving a byte with the value, a byte
 with the selection keystroke and a standard string. The list is
 terminated with an end word (value -1). There are two forms. In the
 first, the selection keystrokes are set to zero. In this case, when a
 code is selected, the value will step through all possible values. This
 is best suited to items which can only have two or three possible codes.
 Otherwise the user may select any one of the possible codes, either from
 a list (interactive configuration programs) or from a pull down menu
 (menu driven configuration programs).
Selection (Type 6)
A selection is in the same form as a code, but instead of a byte
 being set to the selected value, the value is treated as an index to a
 list of status bytes. When one is selected, it is set to wsi.slct ($80),
 the previous selection (if different) is set to wsi..avbl (zero). If any
 status bytes are unavailable (set to wsi.unav=$10), then they will be
 ignored. The first status byte in the list must not be
 unavailable.
Values (Types 8 (byte), 10 (word) & 12 (long
 word))
Largely self explanatory. The attributes are the minimum and
 maximum values. All values are treated as unsigned.
Item Selection Keystroke
The item selection keystroke is an uppercased keystroke which will
 select the item in the main menu. The action of selecting the item will
 depend on the item type. For a code or select item a pull-down window
 may be opened to enable the user to select the appropriate code. For
 character item, a single keystroke will be expected. for all other types
 of item, the item will be made available for editing. For interactive
 configuration programs, the selection keystroke has no meaning.
Pointer to Item
The pointer to item, and all the other pointers in the definition,
 are relative addresses stored in a word (e.g. dc.w item-*).
Pointer to Item Pre-Processing Routine
It is possible to provide a pre-processing routine within the main
 program which will be called before an item is presented for changing.
 This will be when the item is selected in a menu configuration program,
 or before the prompt is written in an interactive configuration program.
 If there is no pre-processing routine, the pointer should be zero. The
 amount of pre-processing that application program can do is not limited.
 It could just set ranges, or it could do the complete configuration
 operation itself, including pulling down windows.
	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D0	Not used	D0	Item set or error
	D1+	Not used	D1+	Scratch
	D7.L	Zero or WMAN vector	D7	Scratch
	A0	Pointer to item	A0	Scratch
	A1	Pointer to description	A1	[new] pointer to description
	A2	Pointer to attributes	A2	[new] pointer to attributes
	A3	Pointer to 4 Kb work space	A3	Scratch
	A4+	Not used by any routine	A4+	Scratch

	Error Returns
	< 0 = Error
0 = Ok
> 0
 Item set, do not prompt or change

The space pointed to by A3 is not used by the configuration program
 and can be used by the application code. Initially it is clear. The
 application code may use up to 512 bytes of stack.
If D0 (and the status) is returned <0, then the Configuration
 program will write out an error message and stop.
Pointer to Item Post-Processing Routine
It is possible to provide a post-processing routine within the
 main program which will be called for each item before configuration
 starts, and for each item after any item is changed. It can be used to
 set limits or other dependencies.
	Call
 Parameters	Return
 Parameters
	Register	Description	Register	Description
	D0	Not used	D0	Item set or error
	D1.B	Set this item just changed	D1.B	Item status - available or unavailable
	D2+	Not used	D2+	Scratch
	D7.L	Zero or WMAN vector	D7	Scratch
	A0	Pointer to item	A0	Scratch
	A1	Pointer to description	A1	[new] pointer to description
	A2	Pointer to attributes	A2	[new] pointer to attributes
	A3	Pointer to 4 Kb work space	A3	Scratch
	A4+	Not used by any routine	A4+	Scratch

	Error Returns
	< 0 = Error
0 = Ok
> 0:
 Bit 0 set = Item reset
> 0: Bit 1 set = description
 reset
> 0: Bit 2 set = attributes
 reset

The space pointed to by A3 is not used by the configuration program
 and can be used by the application code. Initially it is clear. The
 application code may use up to 512 bytes of stack. If an item description
 is changed, it should occupy the same number of lines as the
 original.
The returned values for D1 are WSI.AVBL ($00) if the item can be
 changed or WSI.UNAV ($10) if the item is not available for
 changing.
If D0 and the status are <0, A1 and A2 and the item status will
 not be updated, the error messsage will be written out, no further
 postprocessing routines will be called, and (for an interactive
 Configuration program) the item just set will be re-presented.
A post-processing routine can also be used to set up initial
 descriptions and attributes.
Description of Item
The description of an item is in the form of a string. Each
 description can have several lines, separated by newline characters.
 Each line should be no longer than 64 characters, except the last line
 must allow space for the longest item. Interactive programs may append a
 list of states or selections to the description.
Pointer to attributes
The attributes are item dependent. See Section 8.2, “Types Of Item” above for attribute
 descriptions.

Chapter 9. CONFIG Level 2

9.1. Configuration Information Specification

We felt that a number of things were missing in the definition of
 level 1 of the QJUMP Standard configuration definition. Therefore, after a
 number of discussions, the following suggestions were made to be
 implemented on level 2.
First of all, re-configuring software you already had in previous
 versions is a very boring thing. Most of the time, all you do is set the
 old settings in the new file. This has to be made automatic. Therefore,
 the item structure is expanded to make room for an config-item-ID.
The CONFIG2 configuration consists of the following
 information:
 Configuration ID
 Configuration level
 Software name
 Software version
 List of
 Item ID (long) <---- NEW!!!
 Type of item (string, integer etc.) (byte)
 Item Selection keystroke (byte)
 Pointer to item
 Pointer to item pre-processing routine
 Pointer to item post-processing routine
 Pointer to description of item
 Pointer to attributes of item (item type dependent)
 End word (value -1)
The ID should be unique for every item. There may be global ID
 names, which could be used by many programs (like the colourway setting),
 there can be unique "registered" ID names (which are preferred) and there
 may be "unregistered" local ID names. Global ID names should start with an
 underscore, unique ID names should start with a letter. For unregistered
 local IDs, the top byte of the ID has to be 0.
For all ID names, a list which is maintained by Jochen Merz Software
 is created, to avoid multiple name conflicts. If you wish to register for
 one or more ID names, please write to Jochen Merz Software and enclose an
 I.R.C. You may suggest one or more name, otherwise JMS will try to find a
 sensible abbreviation for you.
ID names consist of a longword (i.e. four characters). The first
 three characters have to be reserved by JMS, the fourth character can
 freely be assigned by the software house for the various items.

9.2. MenuConfig

Note

The MENUCONFIG program requires the
 MENU Extension (file MENU_rext) to be loaded.

When the MENUCONFIG program starts up,
 the user selects the file to configure (which should contain one or more
 level 1 or level 2 config blocks). Level 1 blocks are treated as before
 (i.e. they can be printed or configured), but for level 2, there is an
 additional UPDATE facility.
CONFIG "learns" level 2 configurations
 and stores the settings of the item for any ID in a separate file, giving
 a "global" default configuration file.
When the user selects UPDATE, the config block is scanned for IDs,
 and every ID is checked in the global default configuration file. If it is
 found, the preferred setting is automatically copied in the file which is
 to be configured. This way, updating programs is much
 easier and nearly automatic. In fact, in could be
 made completely automatic (via parameter string).
Another advantage is, that the configuration can be made language
 independent.
The "learned" configuration of an English file could be used to
 configure a German or French file, for example, provided that the same
 items have the same ID's. Care should be taken for items, which are
 language dependent - filenames, for example, such as help files, auto-save
 filenames and so on - which should have different
 ID's, otherwise the German program would save to an English file name or
 vice versa.
Local IDs are not stored by MENUCONFIG by
 default. You can configure MENUCONFIG from
 V3.21 onwards to enable the save of local IDs, but it may crash your
 system if you update files with the same "local" ID with different
 meaning, e.g. a string assignment is done to an ID which was defined as a
 word. There is no type check!!!
We think it is safer not to save local IDs and update as
 follows:
When a user wants to update a file containing local IDs, then
 MenuConfig has to "learn" the old settings from the old (already
 configured) version of the file, and these settings are then updated to
 the new version of the file. The local IDs are not stored anywhere else,
 as this could lead to ID clashes between different files containing the
 same local ID for different purposes.
MENUCONFIG V2 stores the learned settings
 in a file called MenuConfig_INF on your current
 PROGram default device. It will try to read it from there the next time to
 execute MENUCONFIG. You can, of course, tell
 MENUCONFIG to load a different _INF file
 containing other configuration information, for example if you prefer
 having different configurations for colour and monochrome versions.
When you terminate MENUCONFIG and you
 changed or learned new settings, MENUCONFIG
 asks you whether you want to update the _INF file, so that the settings
 are preserved for the next update.

9.3. Changed Item Types

The attributes for String (Type 0) have been
 extended, to allow menu-driven configuration programs better options for a
 selection, depending on the type.
There are two additional bits used in the string attributes: bits 8
 and 9. These define the type of string, so that the configuration program
 can treat these strings in a special way. The possible combinations
 are:
 cfs.sspc equ %0000000000000001 string strip spaces
 cfs.file equ %0000000100000000 string is filename
 cfs.dir equ %0000001000000000 string is directory
 cfs.ext equ %0000001100000000 string is extension
At present, these features are supported by the new
 MenuConfig application, and will be ignored by
 the standard CONFIG application.

9.4. New Item Types

CONFIG Level 2 supports the original 7 types of item as described in
 Section 8.2, “Types Of Item” in the previous chapter,
 plus a new item type.
Nothing/all (Type ???)
It became obvious in MENUCONFIG, that a
 new item type "nothing" or "all" is required, which does not do anything
 automatic but calling the pre/post-processing routines. This is useful
 for proving own menus without having to mess around with unwanted texts.
 In addition, more information is required to be passed to these
 pre/postprocessing routines. We think, at the moment, of the following
 scheme:
A3, which points to a 4kBytes space, is negative indexed and
 provides the following information:
 $0000 4k base of workspace passed to pre/postprocessing routine
 -$0004 long MenuConfig's version
 -$0008 long primary channel ID
 -$000c long pointer to working definition
 -$0010 2 word primary window x/y size
 -$0014 2 word primary window x/y origin
 -$0018 2 word work area x/y size
 -$001c 2 word work area x/y origin
 -$001d byte text info window number in working def
 -$001e byte work info window number in working def
 -$0022 long window manager vector
 -$0026 long pointer to filename of the file being configured
 -$002a long pointer to buffer containing file being configured
 -$002e long pointer to buffer of default directory
 -$0032 long pointer to buffer of output device
 -$0040 long colourway
If the file being configured contains a flag "<<QCFC>>"
 BEFORE the "<<QCFX>>" flag (which can be generated with the
 new Macro MKCFCUT) then
 MENUCONFIG offers the user the choice to save a
 configured version without the config texts, to
 reduce the required file size to the minimum (as the configuration texts
 are not required anymore after configuration).
Of course, a file treated this way cannot be configured afterwards
 anymore. Programmers should take care that the configuration items come
 before the configuration texts, otherwise they will
 be cut away too. So make sure that the configuration texts are always the
 last section in your file!!!
List of Global ID's:

_COL Main Colourway Byte range -1, 0 to 3.
_COS Sub-Window Colourway Byte range -1, 0 to 3.
_COB Button Colourway Byte range -1, 0 to 3.
_FFU Flash-frequency for update icon Byte 0 (steady) or ticks

Chapter 10. Latest improvements

A number of improvemnets and enhancements have been added to the
 Pointer Environment over the years since the original printed version of
 this document was created.
This section of the printed manual used to have details, however,
 these details have been incorporated into the main body of the text in this
 "online" version. [ND]

Part V. Indices & Revision History

SuperBASIC Functions & Procedures Index

A
	ACTION, Rules and Reserved Symbols
		Definition, ACTION

	aflag%, Loose And Menu Item Flag Array
	ALCHP, WBLOB
	ALCSTAT, Structure, SETWRK
		Definition, ALCSTAT

	Application sub-window hit routine, Application Sub-Window Hit Routine
	Application windows control routine, Application Window Control Routine
	APPN, A_WLST, INFO, LOOS
		Definition, APPN

	Array Parameters, Array parameters
		aflag%, Loose And Menu Item Flag Array
	cta%, Control Definition Array
	iattr, Item Attributes Array
	lflag%, Loose And Menu Item Flag Array
	wattr%, Window Attributes Array
	wdef%, Window Size/Position Definition Array

	ARROW
		Definition, ARROW

	Assembler Macros, Assembler Macros, Index of macros
		Index of macros, Index of macros
	List of Macros, List of Macros
	Menu macros, Menu Macros
		Structure, Structure

	Rules and reserver symbols, Rules and Reserved Symbols
	Text macros, Text Macros

	Assembly language, Assembly Language & the Pointer Environment
	A_CTRL
		Definition, A_CTRL

	A_END
		Definition, A_END

	A_MENU
		Definition, A_MENU

	A_OBJE
		Definition, A_OBJE

	A_RLST
		Definition, A_RLST

	A_SLST
		Definition, A_SLST

	A_WDEF, A_WINDW
		Definition, A_WDEF

	A_WINDW
		Definition, A_WINDW

	A_WLST
		Definition, A_WLST

B
	BAR
		Definition, BAR

	BLOB
		Definition, BLOB

	BORDER
		Definition, BORDER

C
	Channel definition block, Channel definition block
	Channel definition block, Extended, Channel definition block, Extended Channel Block
	CH_ITEM, MK_LIL
		Definition, CH_ITEM

	CH_PTR
		Definition, CH_PTR

	CH_WIN
		Definition, CH_WIN

	Concepts, Introduction & Concepts, Concepts
		A typical window, A Typical Window
	Action routine, Action Routine
	Application object list, Application Object List
	Application spacing list, Application Spacing List
	Application sub-window, Application Sub-Window
	Application sub-window list, Application Sub-Window List
	Blob, Blob
	Bottom window, Bottom Window
	Control definition, Control Definition
	Control routine, Control Routine
	Draw routine, Draw Routine
	Hit area, Hit Area
	Hit routine, Hit Routine
	Index items, Index Items
	Information object list, Information Object List
	Information sub-window list, Information Sub-Window List
	Initial position, Initial Position
	Item, Item
	Item attributes, Item Attributes
	Item number, Item Number
	Locked window, Locked Window
	Loose item list, Loose Item List
	Loose menu item, Loose Menu Item
	Managed window, Managed Window
	Menu sub-window, Menu Sub-Window
	Outline, Outline
	Pan/scroll bars, Pan/Scroll Bars
	Pattern, Pattern
	Pick, Pick
	Pile, Pile
	Pointer, Pointer
	Pointer Environment, Pointer Environment
	Pointer Interface, Pointer Interface
	Primary window, Primary Window
	Scan order, Scan Order
	Secondary window, Secondary Window
	Sections, Sections
	Setup, Setup
	Setup routine, Setup Routine
	Size checking, Size Checking
	Sprite, Sprite
	Status, Status
	Staus block, Status Block
	Sub-menu, Sub-Menu
	Sub-window, Sub-Window
	Timing out, Timing Out
	Top window, Top Window
	Unlockable window, Unlockable Window
	Unlocked window, Unlocked Window
	Unmanaged window, Unmanaged Window
	Unset, Unset
	Window definition, Window Definition
	Window Manager, Window Manager
	Working definition, Working Definition

	Config
		Header block, Configuration Information Specification
	Item attributes, Types Of Item
	Item description, Types Of Item
	Item post processing routine, Types Of Item
	Item pre-processing routine, Types Of Item
	Item types, Types Of Item
		Character, Types Of Item
	Code, Types Of Item
	Selection, Types Of Item
	String, Types Of Item
	Values - byte, word, string, Types Of Item

	Level 1, CONFIG Level 1
	Level 2, Configuration Information Specification
		Changed item types, Changed Item Types
	New item types, New Item Types
	Type all/nothing, New Item Types

	Pointer to item, Types Of Item
	Selection keystroke, Types Of Item

	CSIZE
		Definition, CSIZE

	cta%, Control Definition Array
	CTRL
		Definition, CTRL

	CTRLMAX, A_CTRL
		Definition, CTRLMAX

	Current item, Current Item, Window Status Area
	CVSCR
		Description, CVSCR

D
	Data Structures, Data Structures, Window Status Area, Window Status Area
	Data Structures - Pointer Interface, Pointer Interface, Area Mask, Area Mask
	Data Structures - Window definition, Window Definition, Working Definition, Working Definition
	Data Structures - Window Manager, Window Manager, Window Status Area, Window Status Area
	Digital precision, Compiled SuperBASIC
	DocBook, Preface
	Docbook, Preface
	DRAW
		Definition, DRAW

	DR_ADRW
		Definition, DR_ADRW

	DR_AWDF
		Definition, DR_AWDF

	DR_IDRW
		Definition, DR_IDRW

	DR_IWDF
		Definition, DR_IWDF

	DR_LDRW
		Definition, DR_LDRW

	DR_LWDF
		Definition, DR_LWDF

	DR_PPOS, Setup, Frequently Asked Questions
	DR_PRPOS
		Definition, DR_PPOS

	DR_PULD, Setup
	DR_PULLD
		Definition, DR_PULLD

	DR_UNST
		Definition, DR_UNST

	Dunbar, Norman, Preface

E
	EDSPR
		Sprite editing application, The Pointer Toolkit

	External pan and scroll, External Pan and Scroll

F
	FIXPF
		Description, FIXPF
	Name Table fixer, Bug "fixes"

G
	Graphics objects, Graphics objects
		Area mask, Area Mask
	Blob definition, Blob Definition
	Colour, Colour
	Form, Form
	Origin, Origin
	Pattern definition, Pattern Definition
	Patterns, canonical, Pattern
	Repeat attribute, Repeat
	Size, Size
	Sprite definition, Sprite Definition

	Gwilt, George, Preface, MK_AOLST, WM.INDEX Standard Sub-Window Index

H
	HELP
		Definition, HELP

	HOTKEY, HOT_STUFF
	HOT_KEYS, Preface
	HOT_STUFF
		Definition, HOT_STUFF

I
	iattr, Item Attributes Array
	IATTR, BORDER
		Definition, IATTR

	IBAR
		Definition, IBAR

	ILST
		Definition, ILST

	Index of keywords, Index of keywords
	INFO
		Definition, INFO

	INK
		Definition, INK

	Inkscape, Preface
	Internal pan and scroll, Internal Pan and Scroll
	IOP.FLIM, IOP.FLIM Find Window Limits, IOP.SVPW Save Part Window
		Definition, IOP.FLIM Find Window Limits

	IOP.LBLB, IOP.LBLB Write a Line of Blobs
		Definition, IOP.LBLB Write a Line of Blobs

	IOP.OUTL, Pointer Interface, IOP.FLIM Find Window Limits, IOP.OUTL Set Window Outline, Frequently Asked Questions
		Definition, IOP.OUTL Set Window Outline

	IOP.PICK
		Definition, IOP.PICK Pick Window

	IOP.PINF
		Definition, IOP.PINF Get Pointer Information

	IOP.RPTR, Pointer Interface
		Definition, IOP.RPTR Read Pointer

	IOP.RPXL
		Definition, IOP.RPXL Read Pixel Colour

	IOP.RSPW
		Definition, IOP.RSPW Restore Part Window

	IOP.SLNK
		Definition, IOP.SLNK Set Bytes in Linkage Block

	IOP.SPRY, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.SPRY Spray Pixels in Blob

	IOP.SPTR
		Definition, IOP.SPTR Set Pointer Position

	IOP.SVPW, IOP.RSPW Restore Part Window
		Definition, IOP.SVPW Save Part Window

	IOP.SWDEF, Frequently Asked Questions
		Definition, IOP.SWDF Set Sub-Window Definition List

	IOP.SWDF, Pointer Interface, IOP.RPTR Read Pointer
	IOP.WBLB, IOP.LBLB Write a Line of Blobs, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.WBLB Write a Blob

	IOP.WRST, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WRST Window Area Restore

	IOP.WSAV, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WSAV Window Area Save

	IOP.WSPT
		Definition, IOP.WSPT Write a Sprite

	ITEM
		Definition, ITEM

	I_END, A_END
		Definition, I_END

	I_ITEM
		Definition, I_ITEM

	I_OLST
		Definition, I_OLST

	I_WINDW
		Definition, I_WINDW

	I_WLST
		Definition, I_WLST

J
	Jochen Merz Software (JMS), Preface
	JUSTIFY
		Definition, JUSTIFY

K
	Keystroke selection, Keystroke Selection
	Kilgus, Marcel, Preface

L
	LAYOUT, Structure, A_WLST
		Definition, LAYOUT

	LBLOB, WBLOB
		Definition, LBLOB

	LBYTES, WBLOB
	lflag%, Loose And Menu Item Flag Array
	Liberation Software, Compiled SuperBASIC
	LOOS
		Definition, LOOS

	Loose menu item action routine, Loose Menu Item Action Routine
	L_END
		Definition, L_END

	L_ILST
		Definition, L_ILST

	L_ITEM
		Definition, L_ITEM

M
	MENSIZ
		Definition, MENSIZ

	MenuConfig, CONFIG Level 1
		Description, MenuConfig

	Merz, Jochen, Preface
	MKPAT
		Definition, MKPAT

	MKSELK, Text Macros
		Definition, MKSELK

	MKSTR
		Definition, MKSTR

	MKTEXT, Text Macros
		Definition, MKTEXT

	MKTITL
		Definition, MKTITL

	MKTITS
		Definition, MKTITS

	MKXSTR
		Definition, MKXSTR

	MK_AOL, MK_RWL
	MK_AOLST
		Definition, MK_AOLST

	MK_APPW, MK_AWL
	MK_APW
		Definition, MK_APPW

	MK_ASL
		Definition, MK_ASL

	MK_AWL, MK_WDEF
		Definition, MK_AWL

	MK_CDEF
		Definition, MK_CDEF

	MK_IOL, MK_IWL
		Definition, MK_IOL

	MK_IWL, MK_WDEF
		Definition, MK_IWL

	MK_LIL, MK_IOL, MK_WDEF
		Definition, MK_LIL

	MK_RWL
		Definition, MK_RWL

	MK_WDEF, Setup, Drawing Routines
		Definition, MK_WDEF

	MODE, RMODE
	MS_HOT
		Definition, MS_HOT

	MS_SPD
		Definition, MK_SPD

O
	OBJEL
		Definition, OBJEL

	OLST
		Definition, OLST

	ORIGIN, POSN
		Definition, ORIGIN

	OUTLN, Managed Window, Outline, Size Checking, Unmanaged Window, SWDEF, Frequently Asked Questions
		Definition, OUTLN

	OUTLNN, Primary Window

P
	PAINT
		Image painting application, The Pointer Toolkit

	Pannable and scrollable sub-windows, Pannable and Scrollable Sub-Windows
	PATTERN
		Definition, PATTERN

	pdf2txt, Preface
	PICK, Pick, Unlockable Window
		Definition, PICK

	Pointer Environment, Preface, The Pointer Toolkit, Where to start, Channel definition block, Pointer Environment Changes
		Changes, Pointer Environment Changes

	Pointer Interface, The Pointer Toolkit, Pointer Interface, IOP.WRST Window Area Restore, IOP.WRST Window Area Restore, Channel definition block, Pointer Environment Changes
		Changes, Pointer Interface Changes

	Pointer Toolkit, The Pointer Toolkit, Compiled SuperBASIC
		Changes, Pointer Toolkit Changes

	POSN
		Definition, POSN

	PREST, PSAVE
		Definition, PREST

	Primary window, Channel definition block
	PSAVE, MKPAT
		Definition, PSAVE

	PTR_GEN
		Pointer handling code, Preface

	Publican (toolchain), Preface

Q
	QJump, The Pointer Toolkit
	QJump Limited, Preface
	ql-users (mailing list), Preface
	QPC emulator, Preface
	QPCPrint, Preface
	QPTR toolkit, SuperBASIC & the Pointer Environment
	Q_Liberator, Compiled SuperBASIC

R
	RD_PTR, Control Routine, Hit Routine, MK_LIL, MK_APPW, Loose And Menu Item Flag Array
		Definition, RD_PTR

	RECHP, PREST
	RLST
		Definition, RLST

	RMODE
		Definition, RMODE

	ROWEL
		Definition, ROWEL

	RPIXL, Pointer Interface routines
		Definition, RPIXL

	RPTR, Locked Window, RPTR
		Definition, RPTR

S
	SD.WDEF, Pointer Interface, IOP.RPTR Read Pointer, IOP.RPXL Read Pixel Colour, IOP.LBLB Write a Line of Blobs, IOP.OUTL Set Window Outline, WM.WDRAW Draw Window Contents
	Secondary window, Channel definition block
	SELKEY
		Definition, SELKEY

	SETR
		Definition, SETR

	SETWRK, Structure, WINDOW
		Definition, SETWRK

	SIZE
		Definition, SIZE

	SIZE_OPT, Structure, LAYOUT, WINDOW
		Definition, SIZE_OPT

	SLST
		Definition, SLST

	SOFFSET
		Definition, SOFFSET

	SourceForge, Preface
	SPARE
		Definition, SPARE

	SPCEL
		Definition, SPCEL

	SPHDR, SPLIN, WBLOB
		Definition, SPHDR

	SPLIN, SPHDR, WBLOB
		Definition, SPLIN

	SPRAY
		Definition, SPRAY

	SPRITE
		Definition, SPRITE

	SPRSP, MKPAT
	SPSET, SPLIN, WBLOB
		Definition, SPSET

	SPTR
		Definition, SPTR

	SRSP
		Definition, SRSP

	Standard menu action routine, Standard Menu Action Routine
	Status area
		Application menu items, Window Status Area
	Loose items, Window Status Area

	Status area, window, Window Status Area
	STKINC, Frequently Asked Questions
		Description, STKINC
	Stack adjusting utility for Liberated
 programs, Compiled SuperBASIC

	Sub-window indices, Sub-Window Indices
	SuperBASIC, The Pointer Toolkit, Where to start, Compiled SuperBASIC, SuperBASIC & the Pointer Environment
	Supercharge, Compiled SuperBASIC
	SWDEF, Frequently Asked Questions
		Definition, SWDEF

	S_END
		Definition, S_END

T
	Tebby, Tony, Preface
	TEXT
		Definition, TEXT

	Text87, Preface
	Troubleshooting
		Frequently asked questions, Frequently Asked Questions

	Turbo, Compiled SuperBASIC
	TYPE
		Definition, TYPE

U
	Utilities, Utilities
	Utility programs
		CVSCR, CVSCR
	FIXPF, FIXPF
	STKINC, STKINC

V
	Variables
		CLAYOUT, Rules and Reserved Symbols, APPN, A_RLST, A_SLST, A_WDEF, A_WINDW, A_WLST, ILST, INFO, I_ITEM, I_OLST, I_WLST, LOOS, L_ILST, L_ITEM, OBJEL, OLST, ROWEL, RLST, SIZE_OPT, SLST
	CURRA, Rules and Reserved Symbols, A_OBJE, A_WDEF, CTRLMAX, ITEM, L_ILST
	CURRW, Rules and Reserved Symbols, SIZE_OPT, XLAYOUT
	MAXITEM, Rules and Reserved Symbols, ITEM, L_END, L_ILST
	MKT.PRM, Text Macros
	MKT.PRMX, Text Macros
	WSIZES, Rules and Reserved Symbols, SIZE_OPT

W
	WATTR
		Definition, WATTR

	wattr%, Window Attributes Array
	WBLOB, LBLOB, SPHDR, SPRAY, WSPRT
		Definition, WBLOB

	wdef%, Window Size/Position Definition Array
	WINDOW, Managed Window, Outline, Size Checking, Structure, XLAYOUT, Frequently Asked Questions
		Definition, WINDOW

	Window definition
		Application menu index list, Menu Object / Index List Entry
	Application menu object list, Menu Object Lists, Menu Object / Index List Entry
	Application menu row list, Menu Row List
	Application menu spacing list, Menu Object Spacing List
	Application window, Application Sub-Window Definition
	Application window list, Application Sub-Window List
	Application window menus, Menu Sub-Windows Only
	Fixed part, Fixed Part of Window Definition
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List
	Menu item attributes, Menu Item Attributes
	Pan/scroll windows, Pannable and Scrollable Sub-Windows Only
	Repeated part, Repeated Part of Window Definition
	Structure, Structure
	Window attributes, Window Attributes

	Window Manager, The Pointer Toolkit, Compiled SuperBASIC, Window Manager, Index of TRAPs and vectors, Index of TRAPs and vectors, Pointer Environment Changes
		Changes, Window manager Changes

	Window manager access routines, Window Manager Access routines
	Window manager read pointer, Window Manager Read Pointer
	Window manager utility routines, Utility routines
	Window move and change size, Window Move and Change Size
	Window working definition, Working Definition
		Application menu item attributes, Menu Item Attributes
	Application menu object lists, Menu Object Lists
	Application menu windows, Menu Sub-Windows Only
	Application window, Application sub-window definition
	Application window list, Application Sub-Window List
	Header block, Header Block
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List, Information Sub-Window
	Menu index list, Menu Object / Index List Entry
	Menu object list, Menu Object / Index List Entry
	Menu object spacing list, Menu Object Spacing List
	Menu row list, Menu Row List
	Organisation, Working Definition Organisation
	Pan/scroll application windows, Pan & Scroll Sub-Windows Only
	Window attributes, Window Attributes
	Window definition block, Window Definition Block

	WM,RNAME, WM.RNAME - Read Name.
	WM.CHWIN, Window Move and Change Size
		Definition, WM.CHWIN - Change Window Event Handling

	WM.DRBDR, WM.DRBDR - Draw border around current item
		Definition, WM.DRBDR - Draw border around current item

	WM.ENAME, WM.RNAME - Read Name.
		Definition, WM.ENAME - Edit Name

	WM.ERSTR
		Definition, WM.ERSTR - Get String Corresponding To Error
 Code

	WM.FSIZE, Setup routines
		Definition, WM.FSIZE Find Size of Layout

	WM.IDRAW, Utility routines
		Definition, WM.IDRAW - Draw information sub-windows

	WM.INDEX, Draw Routine, Part Drawing routines, WM.UPBAR - Update pan/scroll bars
		Definition, WM.INDEX Standard Sub-Window Index

	WM.LDRAW, Part Drawing routines, Utility routines
		Definition, WM.LDRAW - Loose Menu Item Drawing

	WM.MDRAW, Draw Routine, Setup routines, Part Drawing routines, WM.MDRAW Standard Menu Drawing, Internal Pan and Scroll
		Definition, WM.MDRAW Standard Menu Drawing

	WM.MHIT, Hit Routine, Part Drawing routines, Current Item, Keystroke Selection, WM.RPTR - Read Pointer, Standard Menu Action Routine, Application Window Control Routine, Pannable and Scrollable Sub-Windows, Internal Pan and Scroll
		Definition, WM.MHIT - Standard Application Sub-Window Hit
 Routine

	WM.MSECT
		Definition, WM.MSECT - Find menu section

	WM.PANSC, Control Routine
		Definition, WM.PANSC - Pan/Scroll Standard Menu

	WM.PRPOS, Setup routines, Window Manager Set Window Routines, Frequently Asked Questions
		Definition, WM.PRPOS Primary Window Positioning

	WM.PULLD, Setup routines, Window Manager Set Window Routines
		Definition, WM.PULLD Pull Down Window Open

	WM.RNAME
		Definition, WM.RNAME - Read Name.

	WM.RPTR, Setup routines, Part Drawing routines, Window Manager Read Pointer, Current Item, Keystroke Selection, Application Sub-Window Hit Routine, Standard Menu Action Routine, Application Window Control Routine, Loose Menu Item Action Routine, Pannable and Scrollable Sub-Windows, Window Move and Change Size
		Definition, WM.RPTR - Read Pointer

	WM.RPTRT, Application Sub-Window Hit Routine
	WM.SETUP, Setup, Setup routines, WM.FSIZE Find Size of Layout, WM.SETUP Setup a Managed Window
		Definition, WM.SETUP Setup a Managed Window

	WM.SMENU, Setup Routine, Setup routines
		Definition, WM.SMENU Setup Standard Sub-window Menu

	WM.STIOB
		Definition, WM.STIOB - Set Information Object

	WM.STLOB
		Definition, WM.STLOB - Set Loose Item Object

	WM.SWAPP
		Definition, WM.SWAPP - Set window to application
 sub-window

	WM.SWDEF, Part Drawing routines
		Definition, WM.SWDEF - Set Sub-Window Definition

	WM.SWINF
		Definition, WM.SWINF - Set window to info window

	WM.SWLIT
		Definition, WM.SWLIT - Set window to loose item

	WM.SWSEC
		Definition, WM.SWSEC - Set window to application sub-window
 section

	WM.UNSET, Unset, Window Manager Set Window Routines
		Definition, WM.UNSET Window Unset

	WM.UPBAR, WM.UPBAR - Update pan/scroll bars
		Definition, WM.UPBAR - Update pan/scroll bars

	WM.WDRAW, Setup routines, Drawing routines, Part Drawing routines
		Definition, WM.WDRAW Draw Window Contents

	WM.WRSET, Window Manager Set Window Routines
		Definition, WM.WRSET Window Reset

	WMAN
		Window Manager, Preface

	WM_SETUP, Working Definition Organisation, Structure, Frequently Asked Questions
	WM_SMENU, Working Definition Organisation
	WREST
		Definition, WREST

	WSPRT, SPHDR
		Definition, WSPRT

X
	XLAYOUT, Structure, LAYOUT
		Definition, XLAYOUT

Assembler Index

A
	ACTION, Rules and Reserved Symbols
		Definition, ACTION

	aflag%, Loose And Menu Item Flag Array
	ALCHP, WBLOB
	ALCSTAT, Structure, SETWRK
		Definition, ALCSTAT

	Application sub-window hit routine, Application Sub-Window Hit Routine
	Application windows control routine, Application Window Control Routine
	APPN, A_WLST, INFO, LOOS
		Definition, APPN

	Array Parameters, Array parameters
		aflag%, Loose And Menu Item Flag Array
	cta%, Control Definition Array
	iattr, Item Attributes Array
	lflag%, Loose And Menu Item Flag Array
	wattr%, Window Attributes Array
	wdef%, Window Size/Position Definition Array

	ARROW
		Definition, ARROW

	Assembler Macros, Assembler Macros, Index of macros
		Index of macros, Index of macros
	List of Macros, List of Macros
	Menu macros, Menu Macros
		Structure, Structure

	Rules and reserver symbols, Rules and Reserved Symbols
	Text macros, Text Macros

	Assembly language, Assembly Language & the Pointer Environment
	A_CTRL
		Definition, A_CTRL

	A_END
		Definition, A_END

	A_MENU
		Definition, A_MENU

	A_OBJE
		Definition, A_OBJE

	A_RLST
		Definition, A_RLST

	A_SLST
		Definition, A_SLST

	A_WDEF, A_WINDW
		Definition, A_WDEF

	A_WINDW
		Definition, A_WINDW

	A_WLST
		Definition, A_WLST

B
	BAR
		Definition, BAR

	BLOB
		Definition, BLOB

	BORDER
		Definition, BORDER

C
	Channel definition block, Channel definition block
	Channel definition block, Extended, Channel definition block, Extended Channel Block
	CH_ITEM, MK_LIL
		Definition, CH_ITEM

	CH_PTR
		Definition, CH_PTR

	CH_WIN
		Definition, CH_WIN

	Concepts, Introduction & Concepts, Concepts
		A typical window, A Typical Window
	Action routine, Action Routine
	Application object list, Application Object List
	Application spacing list, Application Spacing List
	Application sub-window, Application Sub-Window
	Application sub-window list, Application Sub-Window List
	Blob, Blob
	Bottom window, Bottom Window
	Control definition, Control Definition
	Control routine, Control Routine
	Draw routine, Draw Routine
	Hit area, Hit Area
	Hit routine, Hit Routine
	Index items, Index Items
	Information object list, Information Object List
	Information sub-window list, Information Sub-Window List
	Initial position, Initial Position
	Item, Item
	Item attributes, Item Attributes
	Item number, Item Number
	Locked window, Locked Window
	Loose item list, Loose Item List
	Loose menu item, Loose Menu Item
	Managed window, Managed Window
	Menu sub-window, Menu Sub-Window
	Outline, Outline
	Pan/scroll bars, Pan/Scroll Bars
	Pattern, Pattern
	Pick, Pick
	Pile, Pile
	Pointer, Pointer
	Pointer Environment, Pointer Environment
	Pointer Interface, Pointer Interface
	Primary window, Primary Window
	Scan order, Scan Order
	Secondary window, Secondary Window
	Sections, Sections
	Setup, Setup
	Setup routine, Setup Routine
	Size checking, Size Checking
	Sprite, Sprite
	Status, Status
	Staus block, Status Block
	Sub-menu, Sub-Menu
	Sub-window, Sub-Window
	Timing out, Timing Out
	Top window, Top Window
	Unlockable window, Unlockable Window
	Unlocked window, Unlocked Window
	Unmanaged window, Unmanaged Window
	Unset, Unset
	Window definition, Window Definition
	Window Manager, Window Manager
	Working definition, Working Definition

	Config
		Header block, Configuration Information Specification
	Item attributes, Types Of Item
	Item description, Types Of Item
	Item post processing routine, Types Of Item
	Item pre-processing routine, Types Of Item
	Item types, Types Of Item
		Character, Types Of Item
	Code, Types Of Item
	Selection, Types Of Item
	String, Types Of Item
	Values - byte, word, string, Types Of Item

	Level 1, CONFIG Level 1
	Level 2, Configuration Information Specification
		Changed item types, Changed Item Types
	New item types, New Item Types
	Type all/nothing, New Item Types

	Pointer to item, Types Of Item
	Selection keystroke, Types Of Item

	CSIZE
		Definition, CSIZE

	cta%, Control Definition Array
	CTRL
		Definition, CTRL

	CTRLMAX, A_CTRL
		Definition, CTRLMAX

	Current item, Current Item, Window Status Area
	CVSCR
		Description, CVSCR

D
	Data Structures, Data Structures, Window Status Area, Window Status Area
	Data Structures - Pointer Interface, Pointer Interface, Area Mask, Area Mask
	Data Structures - Window definition, Window Definition, Working Definition, Working Definition
	Data Structures - Window Manager, Window Manager, Window Status Area, Window Status Area
	Digital precision, Compiled SuperBASIC
	DocBook, Preface
	Docbook, Preface
	DRAW
		Definition, DRAW

	DR_ADRW
		Definition, DR_ADRW

	DR_AWDF
		Definition, DR_AWDF

	DR_IDRW
		Definition, DR_IDRW

	DR_IWDF
		Definition, DR_IWDF

	DR_LDRW
		Definition, DR_LDRW

	DR_LWDF
		Definition, DR_LWDF

	DR_PPOS, Setup, Frequently Asked Questions
	DR_PRPOS
		Definition, DR_PPOS

	DR_PULD, Setup
	DR_PULLD
		Definition, DR_PULLD

	DR_UNST
		Definition, DR_UNST

	Dunbar, Norman, Preface

E
	EDSPR
		Sprite editing application, The Pointer Toolkit

	External pan and scroll, External Pan and Scroll

F
	FIXPF
		Description, FIXPF
	Name Table fixer, Bug "fixes"

G
	Graphics objects, Graphics objects
		Area mask, Area Mask
	Blob definition, Blob Definition
	Colour, Colour
	Form, Form
	Origin, Origin
	Pattern definition, Pattern Definition
	Patterns, canonical, Pattern
	Repeat attribute, Repeat
	Size, Size
	Sprite definition, Sprite Definition

	Gwilt, George, Preface, MK_AOLST, WM.INDEX Standard Sub-Window Index

H
	HELP
		Definition, HELP

	HOTKEY, HOT_STUFF
	HOT_KEYS, Preface
	HOT_STUFF
		Definition, HOT_STUFF

I
	iattr, Item Attributes Array
	IATTR, BORDER
		Definition, IATTR

	IBAR
		Definition, IBAR

	ILST
		Definition, ILST

	Index of keywords, Index of keywords
	INFO
		Definition, INFO

	INK
		Definition, INK

	Inkscape, Preface
	Internal pan and scroll, Internal Pan and Scroll
	IOP.FLIM, IOP.FLIM Find Window Limits, IOP.SVPW Save Part Window
		Definition, IOP.FLIM Find Window Limits

	IOP.LBLB, IOP.LBLB Write a Line of Blobs
		Definition, IOP.LBLB Write a Line of Blobs

	IOP.OUTL, Pointer Interface, IOP.FLIM Find Window Limits, IOP.OUTL Set Window Outline, Frequently Asked Questions
		Definition, IOP.OUTL Set Window Outline

	IOP.PICK
		Definition, IOP.PICK Pick Window

	IOP.PINF
		Definition, IOP.PINF Get Pointer Information

	IOP.RPTR, Pointer Interface
		Definition, IOP.RPTR Read Pointer

	IOP.RPXL
		Definition, IOP.RPXL Read Pixel Colour

	IOP.RSPW
		Definition, IOP.RSPW Restore Part Window

	IOP.SLNK
		Definition, IOP.SLNK Set Bytes in Linkage Block

	IOP.SPRY, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.SPRY Spray Pixels in Blob

	IOP.SPTR
		Definition, IOP.SPTR Set Pointer Position

	IOP.SVPW, IOP.RSPW Restore Part Window
		Definition, IOP.SVPW Save Part Window

	IOP.SWDEF, Frequently Asked Questions
		Definition, IOP.SWDF Set Sub-Window Definition List

	IOP.SWDF, Pointer Interface, IOP.RPTR Read Pointer
	IOP.WBLB, IOP.LBLB Write a Line of Blobs, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.WBLB Write a Blob

	IOP.WRST, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WRST Window Area Restore

	IOP.WSAV, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WSAV Window Area Save

	IOP.WSPT
		Definition, IOP.WSPT Write a Sprite

	ITEM
		Definition, ITEM

	I_END, A_END
		Definition, I_END

	I_ITEM
		Definition, I_ITEM

	I_OLST
		Definition, I_OLST

	I_WINDW
		Definition, I_WINDW

	I_WLST
		Definition, I_WLST

J
	Jochen Merz Software (JMS), Preface
	JUSTIFY
		Definition, JUSTIFY

K
	Keystroke selection, Keystroke Selection
	Kilgus, Marcel, Preface

L
	LAYOUT, Structure, A_WLST
		Definition, LAYOUT

	LBLOB, WBLOB
		Definition, LBLOB

	LBYTES, WBLOB
	lflag%, Loose And Menu Item Flag Array
	Liberation Software, Compiled SuperBASIC
	LOOS
		Definition, LOOS

	Loose menu item action routine, Loose Menu Item Action Routine
	L_END
		Definition, L_END

	L_ILST
		Definition, L_ILST

	L_ITEM
		Definition, L_ITEM

M
	MENSIZ
		Definition, MENSIZ

	MenuConfig, CONFIG Level 1
		Description, MenuConfig

	Merz, Jochen, Preface
	MKPAT
		Definition, MKPAT

	MKSELK, Text Macros
		Definition, MKSELK

	MKSTR
		Definition, MKSTR

	MKTEXT, Text Macros
		Definition, MKTEXT

	MKTITL
		Definition, MKTITL

	MKTITS
		Definition, MKTITS

	MKXSTR
		Definition, MKXSTR

	MK_AOL, MK_RWL
	MK_AOLST
		Definition, MK_AOLST

	MK_APPW, MK_AWL
	MK_APW
		Definition, MK_APPW

	MK_ASL
		Definition, MK_ASL

	MK_AWL, MK_WDEF
		Definition, MK_AWL

	MK_CDEF
		Definition, MK_CDEF

	MK_IOL, MK_IWL
		Definition, MK_IOL

	MK_IWL, MK_WDEF
		Definition, MK_IWL

	MK_LIL, MK_IOL, MK_WDEF
		Definition, MK_LIL

	MK_RWL
		Definition, MK_RWL

	MK_WDEF, Setup, Drawing Routines
		Definition, MK_WDEF

	MODE, RMODE
	MS_HOT
		Definition, MS_HOT

	MS_SPD
		Definition, MK_SPD

O
	OBJEL
		Definition, OBJEL

	OLST
		Definition, OLST

	ORIGIN, POSN
		Definition, ORIGIN

	OUTLN, Managed Window, Outline, Size Checking, Unmanaged Window, SWDEF, Frequently Asked Questions
		Definition, OUTLN

	OUTLNN, Primary Window

P
	PAINT
		Image painting application, The Pointer Toolkit

	Pannable and scrollable sub-windows, Pannable and Scrollable Sub-Windows
	PATTERN
		Definition, PATTERN

	pdf2txt, Preface
	PICK, Pick, Unlockable Window
		Definition, PICK

	Pointer Environment, Preface, The Pointer Toolkit, Where to start, Channel definition block, Pointer Environment Changes
		Changes, Pointer Environment Changes

	Pointer Interface, The Pointer Toolkit, Pointer Interface, IOP.WRST Window Area Restore, IOP.WRST Window Area Restore, Channel definition block, Pointer Environment Changes
		Changes, Pointer Interface Changes

	Pointer Toolkit, The Pointer Toolkit, Compiled SuperBASIC
		Changes, Pointer Toolkit Changes

	POSN
		Definition, POSN

	PREST, PSAVE
		Definition, PREST

	Primary window, Channel definition block
	PSAVE, MKPAT
		Definition, PSAVE

	PTR_GEN
		Pointer handling code, Preface

	Publican (toolchain), Preface

Q
	QJump, The Pointer Toolkit
	QJump Limited, Preface
	ql-users (mailing list), Preface
	QPC emulator, Preface
	QPCPrint, Preface
	QPTR toolkit, SuperBASIC & the Pointer Environment
	Q_Liberator, Compiled SuperBASIC

R
	RD_PTR, Control Routine, Hit Routine, MK_LIL, MK_APPW, Loose And Menu Item Flag Array
		Definition, RD_PTR

	RECHP, PREST
	RLST
		Definition, RLST

	RMODE
		Definition, RMODE

	ROWEL
		Definition, ROWEL

	RPIXL, Pointer Interface routines
		Definition, RPIXL

	RPTR, Locked Window, RPTR
		Definition, RPTR

S
	SD.WDEF, Pointer Interface, IOP.RPTR Read Pointer, IOP.RPXL Read Pixel Colour, IOP.LBLB Write a Line of Blobs, IOP.OUTL Set Window Outline, WM.WDRAW Draw Window Contents
	Secondary window, Channel definition block
	SELKEY
		Definition, SELKEY

	SETR
		Definition, SETR

	SETWRK, Structure, WINDOW
		Definition, SETWRK

	SIZE
		Definition, SIZE

	SIZE_OPT, Structure, LAYOUT, WINDOW
		Definition, SIZE_OPT

	SLST
		Definition, SLST

	SOFFSET
		Definition, SOFFSET

	SourceForge, Preface
	SPARE
		Definition, SPARE

	SPCEL
		Definition, SPCEL

	SPHDR, SPLIN, WBLOB
		Definition, SPHDR

	SPLIN, SPHDR, WBLOB
		Definition, SPLIN

	SPRAY
		Definition, SPRAY

	SPRITE
		Definition, SPRITE

	SPRSP, MKPAT
	SPSET, SPLIN, WBLOB
		Definition, SPSET

	SPTR
		Definition, SPTR

	SRSP
		Definition, SRSP

	Standard menu action routine, Standard Menu Action Routine
	Status area
		Application menu items, Window Status Area
	Loose items, Window Status Area

	Status area, window, Window Status Area
	STKINC, Frequently Asked Questions
		Description, STKINC
	Stack adjusting utility for Liberated
 programs, Compiled SuperBASIC

	Sub-window indices, Sub-Window Indices
	SuperBASIC, The Pointer Toolkit, Where to start, Compiled SuperBASIC, SuperBASIC & the Pointer Environment
	Supercharge, Compiled SuperBASIC
	SWDEF, Frequently Asked Questions
		Definition, SWDEF

	S_END
		Definition, S_END

T
	Tebby, Tony, Preface
	TEXT
		Definition, TEXT

	Text87, Preface
	Troubleshooting
		Frequently asked questions, Frequently Asked Questions

	Turbo, Compiled SuperBASIC
	TYPE
		Definition, TYPE

U
	Utilities, Utilities
	Utility programs
		CVSCR, CVSCR
	FIXPF, FIXPF
	STKINC, STKINC

V
	Variables
		CLAYOUT, Rules and Reserved Symbols, APPN, A_RLST, A_SLST, A_WDEF, A_WINDW, A_WLST, ILST, INFO, I_ITEM, I_OLST, I_WLST, LOOS, L_ILST, L_ITEM, OBJEL, OLST, ROWEL, RLST, SIZE_OPT, SLST
	CURRA, Rules and Reserved Symbols, A_OBJE, A_WDEF, CTRLMAX, ITEM, L_ILST
	CURRW, Rules and Reserved Symbols, SIZE_OPT, XLAYOUT
	MAXITEM, Rules and Reserved Symbols, ITEM, L_END, L_ILST
	MKT.PRM, Text Macros
	MKT.PRMX, Text Macros
	WSIZES, Rules and Reserved Symbols, SIZE_OPT

W
	WATTR
		Definition, WATTR

	wattr%, Window Attributes Array
	WBLOB, LBLOB, SPHDR, SPRAY, WSPRT
		Definition, WBLOB

	wdef%, Window Size/Position Definition Array
	WINDOW, Managed Window, Outline, Size Checking, Structure, XLAYOUT, Frequently Asked Questions
		Definition, WINDOW

	Window definition
		Application menu index list, Menu Object / Index List Entry
	Application menu object list, Menu Object Lists, Menu Object / Index List Entry
	Application menu row list, Menu Row List
	Application menu spacing list, Menu Object Spacing List
	Application window, Application Sub-Window Definition
	Application window list, Application Sub-Window List
	Application window menus, Menu Sub-Windows Only
	Fixed part, Fixed Part of Window Definition
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List
	Menu item attributes, Menu Item Attributes
	Pan/scroll windows, Pannable and Scrollable Sub-Windows Only
	Repeated part, Repeated Part of Window Definition
	Structure, Structure
	Window attributes, Window Attributes

	Window Manager, The Pointer Toolkit, Compiled SuperBASIC, Window Manager, Index of TRAPs and vectors, Index of TRAPs and vectors, Pointer Environment Changes
		Changes, Window manager Changes

	Window manager access routines, Window Manager Access routines
	Window manager read pointer, Window Manager Read Pointer
	Window manager utility routines, Utility routines
	Window move and change size, Window Move and Change Size
	Window working definition, Working Definition
		Application menu item attributes, Menu Item Attributes
	Application menu object lists, Menu Object Lists
	Application menu windows, Menu Sub-Windows Only
	Application window, Application sub-window definition
	Application window list, Application Sub-Window List
	Header block, Header Block
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List, Information Sub-Window
	Menu index list, Menu Object / Index List Entry
	Menu object list, Menu Object / Index List Entry
	Menu object spacing list, Menu Object Spacing List
	Menu row list, Menu Row List
	Organisation, Working Definition Organisation
	Pan/scroll application windows, Pan & Scroll Sub-Windows Only
	Window attributes, Window Attributes
	Window definition block, Window Definition Block

	WM,RNAME, WM.RNAME - Read Name.
	WM.CHWIN, Window Move and Change Size
		Definition, WM.CHWIN - Change Window Event Handling

	WM.DRBDR, WM.DRBDR - Draw border around current item
		Definition, WM.DRBDR - Draw border around current item

	WM.ENAME, WM.RNAME - Read Name.
		Definition, WM.ENAME - Edit Name

	WM.ERSTR
		Definition, WM.ERSTR - Get String Corresponding To Error
 Code

	WM.FSIZE, Setup routines
		Definition, WM.FSIZE Find Size of Layout

	WM.IDRAW, Utility routines
		Definition, WM.IDRAW - Draw information sub-windows

	WM.INDEX, Draw Routine, Part Drawing routines, WM.UPBAR - Update pan/scroll bars
		Definition, WM.INDEX Standard Sub-Window Index

	WM.LDRAW, Part Drawing routines, Utility routines
		Definition, WM.LDRAW - Loose Menu Item Drawing

	WM.MDRAW, Draw Routine, Setup routines, Part Drawing routines, WM.MDRAW Standard Menu Drawing, Internal Pan and Scroll
		Definition, WM.MDRAW Standard Menu Drawing

	WM.MHIT, Hit Routine, Part Drawing routines, Current Item, Keystroke Selection, WM.RPTR - Read Pointer, Standard Menu Action Routine, Application Window Control Routine, Pannable and Scrollable Sub-Windows, Internal Pan and Scroll
		Definition, WM.MHIT - Standard Application Sub-Window Hit
 Routine

	WM.MSECT
		Definition, WM.MSECT - Find menu section

	WM.PANSC, Control Routine
		Definition, WM.PANSC - Pan/Scroll Standard Menu

	WM.PRPOS, Setup routines, Window Manager Set Window Routines, Frequently Asked Questions
		Definition, WM.PRPOS Primary Window Positioning

	WM.PULLD, Setup routines, Window Manager Set Window Routines
		Definition, WM.PULLD Pull Down Window Open

	WM.RNAME
		Definition, WM.RNAME - Read Name.

	WM.RPTR, Setup routines, Part Drawing routines, Window Manager Read Pointer, Current Item, Keystroke Selection, Application Sub-Window Hit Routine, Standard Menu Action Routine, Application Window Control Routine, Loose Menu Item Action Routine, Pannable and Scrollable Sub-Windows, Window Move and Change Size
		Definition, WM.RPTR - Read Pointer

	WM.RPTRT, Application Sub-Window Hit Routine
	WM.SETUP, Setup, Setup routines, WM.FSIZE Find Size of Layout, WM.SETUP Setup a Managed Window
		Definition, WM.SETUP Setup a Managed Window

	WM.SMENU, Setup Routine, Setup routines
		Definition, WM.SMENU Setup Standard Sub-window Menu

	WM.STIOB
		Definition, WM.STIOB - Set Information Object

	WM.STLOB
		Definition, WM.STLOB - Set Loose Item Object

	WM.SWAPP
		Definition, WM.SWAPP - Set window to application
 sub-window

	WM.SWDEF, Part Drawing routines
		Definition, WM.SWDEF - Set Sub-Window Definition

	WM.SWINF
		Definition, WM.SWINF - Set window to info window

	WM.SWLIT
		Definition, WM.SWLIT - Set window to loose item

	WM.SWSEC
		Definition, WM.SWSEC - Set window to application sub-window
 section

	WM.UNSET, Unset, Window Manager Set Window Routines
		Definition, WM.UNSET Window Unset

	WM.UPBAR, WM.UPBAR - Update pan/scroll bars
		Definition, WM.UPBAR - Update pan/scroll bars

	WM.WDRAW, Setup routines, Drawing routines, Part Drawing routines
		Definition, WM.WDRAW Draw Window Contents

	WM.WRSET, Window Manager Set Window Routines
		Definition, WM.WRSET Window Reset

	WMAN
		Window Manager, Preface

	WM_SETUP, Working Definition Organisation, Structure, Frequently Asked Questions
	WM_SMENU, Working Definition Organisation
	WREST
		Definition, WREST

	WSPRT, SPHDR
		Definition, WSPRT

X
	XLAYOUT, Structure, LAYOUT
		Definition, XLAYOUT

Assembler Macros Index

A
	ACTION, Rules and Reserved Symbols
		Definition, ACTION

	aflag%, Loose And Menu Item Flag Array
	ALCHP, WBLOB
	ALCSTAT, Structure, SETWRK
		Definition, ALCSTAT

	Application sub-window hit routine, Application Sub-Window Hit Routine
	Application windows control routine, Application Window Control Routine
	APPN, A_WLST, INFO, LOOS
		Definition, APPN

	Array Parameters, Array parameters
		aflag%, Loose And Menu Item Flag Array
	cta%, Control Definition Array
	iattr, Item Attributes Array
	lflag%, Loose And Menu Item Flag Array
	wattr%, Window Attributes Array
	wdef%, Window Size/Position Definition Array

	ARROW
		Definition, ARROW

	Assembler Macros, Assembler Macros, Index of macros
		Index of macros, Index of macros
	List of Macros, List of Macros
	Menu macros, Menu Macros
		Structure, Structure

	Rules and reserver symbols, Rules and Reserved Symbols
	Text macros, Text Macros

	Assembly language, Assembly Language & the Pointer Environment
	A_CTRL
		Definition, A_CTRL

	A_END
		Definition, A_END

	A_MENU
		Definition, A_MENU

	A_OBJE
		Definition, A_OBJE

	A_RLST
		Definition, A_RLST

	A_SLST
		Definition, A_SLST

	A_WDEF, A_WINDW
		Definition, A_WDEF

	A_WINDW
		Definition, A_WINDW

	A_WLST
		Definition, A_WLST

B
	BAR
		Definition, BAR

	BLOB
		Definition, BLOB

	BORDER
		Definition, BORDER

C
	Channel definition block, Channel definition block
	Channel definition block, Extended, Channel definition block, Extended Channel Block
	CH_ITEM, MK_LIL
		Definition, CH_ITEM

	CH_PTR
		Definition, CH_PTR

	CH_WIN
		Definition, CH_WIN

	Concepts, Introduction & Concepts, Concepts
		A typical window, A Typical Window
	Action routine, Action Routine
	Application object list, Application Object List
	Application spacing list, Application Spacing List
	Application sub-window, Application Sub-Window
	Application sub-window list, Application Sub-Window List
	Blob, Blob
	Bottom window, Bottom Window
	Control definition, Control Definition
	Control routine, Control Routine
	Draw routine, Draw Routine
	Hit area, Hit Area
	Hit routine, Hit Routine
	Index items, Index Items
	Information object list, Information Object List
	Information sub-window list, Information Sub-Window List
	Initial position, Initial Position
	Item, Item
	Item attributes, Item Attributes
	Item number, Item Number
	Locked window, Locked Window
	Loose item list, Loose Item List
	Loose menu item, Loose Menu Item
	Managed window, Managed Window
	Menu sub-window, Menu Sub-Window
	Outline, Outline
	Pan/scroll bars, Pan/Scroll Bars
	Pattern, Pattern
	Pick, Pick
	Pile, Pile
	Pointer, Pointer
	Pointer Environment, Pointer Environment
	Pointer Interface, Pointer Interface
	Primary window, Primary Window
	Scan order, Scan Order
	Secondary window, Secondary Window
	Sections, Sections
	Setup, Setup
	Setup routine, Setup Routine
	Size checking, Size Checking
	Sprite, Sprite
	Status, Status
	Staus block, Status Block
	Sub-menu, Sub-Menu
	Sub-window, Sub-Window
	Timing out, Timing Out
	Top window, Top Window
	Unlockable window, Unlockable Window
	Unlocked window, Unlocked Window
	Unmanaged window, Unmanaged Window
	Unset, Unset
	Window definition, Window Definition
	Window Manager, Window Manager
	Working definition, Working Definition

	Config
		Header block, Configuration Information Specification
	Item attributes, Types Of Item
	Item description, Types Of Item
	Item post processing routine, Types Of Item
	Item pre-processing routine, Types Of Item
	Item types, Types Of Item
		Character, Types Of Item
	Code, Types Of Item
	Selection, Types Of Item
	String, Types Of Item
	Values - byte, word, string, Types Of Item

	Level 1, CONFIG Level 1
	Level 2, Configuration Information Specification
		Changed item types, Changed Item Types
	New item types, New Item Types
	Type all/nothing, New Item Types

	Pointer to item, Types Of Item
	Selection keystroke, Types Of Item

	CSIZE
		Definition, CSIZE

	cta%, Control Definition Array
	CTRL
		Definition, CTRL

	CTRLMAX, A_CTRL
		Definition, CTRLMAX

	Current item, Current Item, Window Status Area
	CVSCR
		Description, CVSCR

D
	Data Structures, Data Structures, Window Status Area, Window Status Area
	Data Structures - Pointer Interface, Pointer Interface, Area Mask, Area Mask
	Data Structures - Window definition, Window Definition, Working Definition, Working Definition
	Data Structures - Window Manager, Window Manager, Window Status Area, Window Status Area
	Digital precision, Compiled SuperBASIC
	DocBook, Preface
	Docbook, Preface
	DRAW
		Definition, DRAW

	DR_ADRW
		Definition, DR_ADRW

	DR_AWDF
		Definition, DR_AWDF

	DR_IDRW
		Definition, DR_IDRW

	DR_IWDF
		Definition, DR_IWDF

	DR_LDRW
		Definition, DR_LDRW

	DR_LWDF
		Definition, DR_LWDF

	DR_PPOS, Setup, Frequently Asked Questions
	DR_PRPOS
		Definition, DR_PPOS

	DR_PULD, Setup
	DR_PULLD
		Definition, DR_PULLD

	DR_UNST
		Definition, DR_UNST

	Dunbar, Norman, Preface

E
	EDSPR
		Sprite editing application, The Pointer Toolkit

	External pan and scroll, External Pan and Scroll

F
	FIXPF
		Description, FIXPF
	Name Table fixer, Bug "fixes"

G
	Graphics objects, Graphics objects
		Area mask, Area Mask
	Blob definition, Blob Definition
	Colour, Colour
	Form, Form
	Origin, Origin
	Pattern definition, Pattern Definition
	Patterns, canonical, Pattern
	Repeat attribute, Repeat
	Size, Size
	Sprite definition, Sprite Definition

	Gwilt, George, Preface, MK_AOLST, WM.INDEX Standard Sub-Window Index

H
	HELP
		Definition, HELP

	HOTKEY, HOT_STUFF
	HOT_KEYS, Preface
	HOT_STUFF
		Definition, HOT_STUFF

I
	iattr, Item Attributes Array
	IATTR, BORDER
		Definition, IATTR

	IBAR
		Definition, IBAR

	ILST
		Definition, ILST

	Index of keywords, Index of keywords
	INFO
		Definition, INFO

	INK
		Definition, INK

	Inkscape, Preface
	Internal pan and scroll, Internal Pan and Scroll
	IOP.FLIM, IOP.FLIM Find Window Limits, IOP.SVPW Save Part Window
		Definition, IOP.FLIM Find Window Limits

	IOP.LBLB, IOP.LBLB Write a Line of Blobs
		Definition, IOP.LBLB Write a Line of Blobs

	IOP.OUTL, Pointer Interface, IOP.FLIM Find Window Limits, IOP.OUTL Set Window Outline, Frequently Asked Questions
		Definition, IOP.OUTL Set Window Outline

	IOP.PICK
		Definition, IOP.PICK Pick Window

	IOP.PINF
		Definition, IOP.PINF Get Pointer Information

	IOP.RPTR, Pointer Interface
		Definition, IOP.RPTR Read Pointer

	IOP.RPXL
		Definition, IOP.RPXL Read Pixel Colour

	IOP.RSPW
		Definition, IOP.RSPW Restore Part Window

	IOP.SLNK
		Definition, IOP.SLNK Set Bytes in Linkage Block

	IOP.SPRY, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.SPRY Spray Pixels in Blob

	IOP.SPTR
		Definition, IOP.SPTR Set Pointer Position

	IOP.SVPW, IOP.RSPW Restore Part Window
		Definition, IOP.SVPW Save Part Window

	IOP.SWDEF, Frequently Asked Questions
		Definition, IOP.SWDF Set Sub-Window Definition List

	IOP.SWDF, Pointer Interface, IOP.RPTR Read Pointer
	IOP.WBLB, IOP.LBLB Write a Line of Blobs, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.WBLB Write a Blob

	IOP.WRST, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WRST Window Area Restore

	IOP.WSAV, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WSAV Window Area Save

	IOP.WSPT
		Definition, IOP.WSPT Write a Sprite

	ITEM
		Definition, ITEM

	I_END, A_END
		Definition, I_END

	I_ITEM
		Definition, I_ITEM

	I_OLST
		Definition, I_OLST

	I_WINDW
		Definition, I_WINDW

	I_WLST
		Definition, I_WLST

J
	Jochen Merz Software (JMS), Preface
	JUSTIFY
		Definition, JUSTIFY

K
	Keystroke selection, Keystroke Selection
	Kilgus, Marcel, Preface

L
	LAYOUT, Structure, A_WLST
		Definition, LAYOUT

	LBLOB, WBLOB
		Definition, LBLOB

	LBYTES, WBLOB
	lflag%, Loose And Menu Item Flag Array
	Liberation Software, Compiled SuperBASIC
	LOOS
		Definition, LOOS

	Loose menu item action routine, Loose Menu Item Action Routine
	L_END
		Definition, L_END

	L_ILST
		Definition, L_ILST

	L_ITEM
		Definition, L_ITEM

M
	MENSIZ
		Definition, MENSIZ

	MenuConfig, CONFIG Level 1
		Description, MenuConfig

	Merz, Jochen, Preface
	MKPAT
		Definition, MKPAT

	MKSELK, Text Macros
		Definition, MKSELK

	MKSTR
		Definition, MKSTR

	MKTEXT, Text Macros
		Definition, MKTEXT

	MKTITL
		Definition, MKTITL

	MKTITS
		Definition, MKTITS

	MKXSTR
		Definition, MKXSTR

	MK_AOL, MK_RWL
	MK_AOLST
		Definition, MK_AOLST

	MK_APPW, MK_AWL
	MK_APW
		Definition, MK_APPW

	MK_ASL
		Definition, MK_ASL

	MK_AWL, MK_WDEF
		Definition, MK_AWL

	MK_CDEF
		Definition, MK_CDEF

	MK_IOL, MK_IWL
		Definition, MK_IOL

	MK_IWL, MK_WDEF
		Definition, MK_IWL

	MK_LIL, MK_IOL, MK_WDEF
		Definition, MK_LIL

	MK_RWL
		Definition, MK_RWL

	MK_WDEF, Setup, Drawing Routines
		Definition, MK_WDEF

	MODE, RMODE
	MS_HOT
		Definition, MS_HOT

	MS_SPD
		Definition, MK_SPD

O
	OBJEL
		Definition, OBJEL

	OLST
		Definition, OLST

	ORIGIN, POSN
		Definition, ORIGIN

	OUTLN, Managed Window, Outline, Size Checking, Unmanaged Window, SWDEF, Frequently Asked Questions
		Definition, OUTLN

	OUTLNN, Primary Window

P
	PAINT
		Image painting application, The Pointer Toolkit

	Pannable and scrollable sub-windows, Pannable and Scrollable Sub-Windows
	PATTERN
		Definition, PATTERN

	pdf2txt, Preface
	PICK, Pick, Unlockable Window
		Definition, PICK

	Pointer Environment, Preface, The Pointer Toolkit, Where to start, Channel definition block, Pointer Environment Changes
		Changes, Pointer Environment Changes

	Pointer Interface, The Pointer Toolkit, Pointer Interface, IOP.WRST Window Area Restore, IOP.WRST Window Area Restore, Channel definition block, Pointer Environment Changes
		Changes, Pointer Interface Changes

	Pointer Toolkit, The Pointer Toolkit, Compiled SuperBASIC
		Changes, Pointer Toolkit Changes

	POSN
		Definition, POSN

	PREST, PSAVE
		Definition, PREST

	Primary window, Channel definition block
	PSAVE, MKPAT
		Definition, PSAVE

	PTR_GEN
		Pointer handling code, Preface

	Publican (toolchain), Preface

Q
	QJump, The Pointer Toolkit
	QJump Limited, Preface
	ql-users (mailing list), Preface
	QPC emulator, Preface
	QPCPrint, Preface
	QPTR toolkit, SuperBASIC & the Pointer Environment
	Q_Liberator, Compiled SuperBASIC

R
	RD_PTR, Control Routine, Hit Routine, MK_LIL, MK_APPW, Loose And Menu Item Flag Array
		Definition, RD_PTR

	RECHP, PREST
	RLST
		Definition, RLST

	RMODE
		Definition, RMODE

	ROWEL
		Definition, ROWEL

	RPIXL, Pointer Interface routines
		Definition, RPIXL

	RPTR, Locked Window, RPTR
		Definition, RPTR

S
	SD.WDEF, Pointer Interface, IOP.RPTR Read Pointer, IOP.RPXL Read Pixel Colour, IOP.LBLB Write a Line of Blobs, IOP.OUTL Set Window Outline, WM.WDRAW Draw Window Contents
	Secondary window, Channel definition block
	SELKEY
		Definition, SELKEY

	SETR
		Definition, SETR

	SETWRK, Structure, WINDOW
		Definition, SETWRK

	SIZE
		Definition, SIZE

	SIZE_OPT, Structure, LAYOUT, WINDOW
		Definition, SIZE_OPT

	SLST
		Definition, SLST

	SOFFSET
		Definition, SOFFSET

	SourceForge, Preface
	SPARE
		Definition, SPARE

	SPCEL
		Definition, SPCEL

	SPHDR, SPLIN, WBLOB
		Definition, SPHDR

	SPLIN, SPHDR, WBLOB
		Definition, SPLIN

	SPRAY
		Definition, SPRAY

	SPRITE
		Definition, SPRITE

	SPRSP, MKPAT
	SPSET, SPLIN, WBLOB
		Definition, SPSET

	SPTR
		Definition, SPTR

	SRSP
		Definition, SRSP

	Standard menu action routine, Standard Menu Action Routine
	Status area
		Application menu items, Window Status Area
	Loose items, Window Status Area

	Status area, window, Window Status Area
	STKINC, Frequently Asked Questions
		Description, STKINC
	Stack adjusting utility for Liberated
 programs, Compiled SuperBASIC

	Sub-window indices, Sub-Window Indices
	SuperBASIC, The Pointer Toolkit, Where to start, Compiled SuperBASIC, SuperBASIC & the Pointer Environment
	Supercharge, Compiled SuperBASIC
	SWDEF, Frequently Asked Questions
		Definition, SWDEF

	S_END
		Definition, S_END

T
	Tebby, Tony, Preface
	TEXT
		Definition, TEXT

	Text87, Preface
	Troubleshooting
		Frequently asked questions, Frequently Asked Questions

	Turbo, Compiled SuperBASIC
	TYPE
		Definition, TYPE

U
	Utilities, Utilities
	Utility programs
		CVSCR, CVSCR
	FIXPF, FIXPF
	STKINC, STKINC

V
	Variables
		CLAYOUT, Rules and Reserved Symbols, APPN, A_RLST, A_SLST, A_WDEF, A_WINDW, A_WLST, ILST, INFO, I_ITEM, I_OLST, I_WLST, LOOS, L_ILST, L_ITEM, OBJEL, OLST, ROWEL, RLST, SIZE_OPT, SLST
	CURRA, Rules and Reserved Symbols, A_OBJE, A_WDEF, CTRLMAX, ITEM, L_ILST
	CURRW, Rules and Reserved Symbols, SIZE_OPT, XLAYOUT
	MAXITEM, Rules and Reserved Symbols, ITEM, L_END, L_ILST
	MKT.PRM, Text Macros
	MKT.PRMX, Text Macros
	WSIZES, Rules and Reserved Symbols, SIZE_OPT

W
	WATTR
		Definition, WATTR

	wattr%, Window Attributes Array
	WBLOB, LBLOB, SPHDR, SPRAY, WSPRT
		Definition, WBLOB

	wdef%, Window Size/Position Definition Array
	WINDOW, Managed Window, Outline, Size Checking, Structure, XLAYOUT, Frequently Asked Questions
		Definition, WINDOW

	Window definition
		Application menu index list, Menu Object / Index List Entry
	Application menu object list, Menu Object Lists, Menu Object / Index List Entry
	Application menu row list, Menu Row List
	Application menu spacing list, Menu Object Spacing List
	Application window, Application Sub-Window Definition
	Application window list, Application Sub-Window List
	Application window menus, Menu Sub-Windows Only
	Fixed part, Fixed Part of Window Definition
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List
	Menu item attributes, Menu Item Attributes
	Pan/scroll windows, Pannable and Scrollable Sub-Windows Only
	Repeated part, Repeated Part of Window Definition
	Structure, Structure
	Window attributes, Window Attributes

	Window Manager, The Pointer Toolkit, Compiled SuperBASIC, Window Manager, Index of TRAPs and vectors, Index of TRAPs and vectors, Pointer Environment Changes
		Changes, Window manager Changes

	Window manager access routines, Window Manager Access routines
	Window manager read pointer, Window Manager Read Pointer
	Window manager utility routines, Utility routines
	Window move and change size, Window Move and Change Size
	Window working definition, Working Definition
		Application menu item attributes, Menu Item Attributes
	Application menu object lists, Menu Object Lists
	Application menu windows, Menu Sub-Windows Only
	Application window, Application sub-window definition
	Application window list, Application Sub-Window List
	Header block, Header Block
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List, Information Sub-Window
	Menu index list, Menu Object / Index List Entry
	Menu object list, Menu Object / Index List Entry
	Menu object spacing list, Menu Object Spacing List
	Menu row list, Menu Row List
	Organisation, Working Definition Organisation
	Pan/scroll application windows, Pan & Scroll Sub-Windows Only
	Window attributes, Window Attributes
	Window definition block, Window Definition Block

	WM,RNAME, WM.RNAME - Read Name.
	WM.CHWIN, Window Move and Change Size
		Definition, WM.CHWIN - Change Window Event Handling

	WM.DRBDR, WM.DRBDR - Draw border around current item
		Definition, WM.DRBDR - Draw border around current item

	WM.ENAME, WM.RNAME - Read Name.
		Definition, WM.ENAME - Edit Name

	WM.ERSTR
		Definition, WM.ERSTR - Get String Corresponding To Error
 Code

	WM.FSIZE, Setup routines
		Definition, WM.FSIZE Find Size of Layout

	WM.IDRAW, Utility routines
		Definition, WM.IDRAW - Draw information sub-windows

	WM.INDEX, Draw Routine, Part Drawing routines, WM.UPBAR - Update pan/scroll bars
		Definition, WM.INDEX Standard Sub-Window Index

	WM.LDRAW, Part Drawing routines, Utility routines
		Definition, WM.LDRAW - Loose Menu Item Drawing

	WM.MDRAW, Draw Routine, Setup routines, Part Drawing routines, WM.MDRAW Standard Menu Drawing, Internal Pan and Scroll
		Definition, WM.MDRAW Standard Menu Drawing

	WM.MHIT, Hit Routine, Part Drawing routines, Current Item, Keystroke Selection, WM.RPTR - Read Pointer, Standard Menu Action Routine, Application Window Control Routine, Pannable and Scrollable Sub-Windows, Internal Pan and Scroll
		Definition, WM.MHIT - Standard Application Sub-Window Hit
 Routine

	WM.MSECT
		Definition, WM.MSECT - Find menu section

	WM.PANSC, Control Routine
		Definition, WM.PANSC - Pan/Scroll Standard Menu

	WM.PRPOS, Setup routines, Window Manager Set Window Routines, Frequently Asked Questions
		Definition, WM.PRPOS Primary Window Positioning

	WM.PULLD, Setup routines, Window Manager Set Window Routines
		Definition, WM.PULLD Pull Down Window Open

	WM.RNAME
		Definition, WM.RNAME - Read Name.

	WM.RPTR, Setup routines, Part Drawing routines, Window Manager Read Pointer, Current Item, Keystroke Selection, Application Sub-Window Hit Routine, Standard Menu Action Routine, Application Window Control Routine, Loose Menu Item Action Routine, Pannable and Scrollable Sub-Windows, Window Move and Change Size
		Definition, WM.RPTR - Read Pointer

	WM.RPTRT, Application Sub-Window Hit Routine
	WM.SETUP, Setup, Setup routines, WM.FSIZE Find Size of Layout, WM.SETUP Setup a Managed Window
		Definition, WM.SETUP Setup a Managed Window

	WM.SMENU, Setup Routine, Setup routines
		Definition, WM.SMENU Setup Standard Sub-window Menu

	WM.STIOB
		Definition, WM.STIOB - Set Information Object

	WM.STLOB
		Definition, WM.STLOB - Set Loose Item Object

	WM.SWAPP
		Definition, WM.SWAPP - Set window to application
 sub-window

	WM.SWDEF, Part Drawing routines
		Definition, WM.SWDEF - Set Sub-Window Definition

	WM.SWINF
		Definition, WM.SWINF - Set window to info window

	WM.SWLIT
		Definition, WM.SWLIT - Set window to loose item

	WM.SWSEC
		Definition, WM.SWSEC - Set window to application sub-window
 section

	WM.UNSET, Unset, Window Manager Set Window Routines
		Definition, WM.UNSET Window Unset

	WM.UPBAR, WM.UPBAR - Update pan/scroll bars
		Definition, WM.UPBAR - Update pan/scroll bars

	WM.WDRAW, Setup routines, Drawing routines, Part Drawing routines
		Definition, WM.WDRAW Draw Window Contents

	WM.WRSET, Window Manager Set Window Routines
		Definition, WM.WRSET Window Reset

	WMAN
		Window Manager, Preface

	WM_SETUP, Working Definition Organisation, Structure, Frequently Asked Questions
	WM_SMENU, Working Definition Organisation
	WREST
		Definition, WREST

	WSPRT, SPHDR
		Definition, WSPRT

X
	XLAYOUT, Structure, LAYOUT
		Definition, XLAYOUT

Main Index

A
	ACTION, Rules and Reserved Symbols
		Definition, ACTION

	aflag%, Loose And Menu Item Flag Array
	ALCHP, WBLOB
	ALCSTAT, Structure, SETWRK
		Definition, ALCSTAT

	Application sub-window hit routine, Application Sub-Window Hit Routine
	Application windows control routine, Application Window Control Routine
	APPN, A_WLST, INFO, LOOS
		Definition, APPN

	Array Parameters, Array parameters
		aflag%, Loose And Menu Item Flag Array
	cta%, Control Definition Array
	iattr, Item Attributes Array
	lflag%, Loose And Menu Item Flag Array
	wattr%, Window Attributes Array
	wdef%, Window Size/Position Definition Array

	ARROW
		Definition, ARROW

	Assembler Macros, Assembler Macros, Index of macros
		Index of macros, Index of macros
	List of Macros, List of Macros
	Menu macros, Menu Macros
		Structure, Structure

	Rules and reserver symbols, Rules and Reserved Symbols
	Text macros, Text Macros

	Assembly language, Assembly Language & the Pointer Environment
	A_CTRL
		Definition, A_CTRL

	A_END
		Definition, A_END

	A_MENU
		Definition, A_MENU

	A_OBJE
		Definition, A_OBJE

	A_RLST
		Definition, A_RLST

	A_SLST
		Definition, A_SLST

	A_WDEF, A_WINDW
		Definition, A_WDEF

	A_WINDW
		Definition, A_WINDW

	A_WLST
		Definition, A_WLST

B
	BAR
		Definition, BAR

	BLOB
		Definition, BLOB

	BORDER
		Definition, BORDER

C
	Channel definition block, Channel definition block
	Channel definition block, Extended, Channel definition block, Extended Channel Block
	CH_ITEM, MK_LIL
		Definition, CH_ITEM

	CH_PTR
		Definition, CH_PTR

	CH_WIN
		Definition, CH_WIN

	Concepts, Introduction & Concepts, Concepts
		A typical window, A Typical Window
	Action routine, Action Routine
	Application object list, Application Object List
	Application spacing list, Application Spacing List
	Application sub-window, Application Sub-Window
	Application sub-window list, Application Sub-Window List
	Blob, Blob
	Bottom window, Bottom Window
	Control definition, Control Definition
	Control routine, Control Routine
	Draw routine, Draw Routine
	Hit area, Hit Area
	Hit routine, Hit Routine
	Index items, Index Items
	Information object list, Information Object List
	Information sub-window list, Information Sub-Window List
	Initial position, Initial Position
	Item, Item
	Item attributes, Item Attributes
	Item number, Item Number
	Locked window, Locked Window
	Loose item list, Loose Item List
	Loose menu item, Loose Menu Item
	Managed window, Managed Window
	Menu sub-window, Menu Sub-Window
	Outline, Outline
	Pan/scroll bars, Pan/Scroll Bars
	Pattern, Pattern
	Pick, Pick
	Pile, Pile
	Pointer, Pointer
	Pointer Environment, Pointer Environment
	Pointer Interface, Pointer Interface
	Primary window, Primary Window
	Scan order, Scan Order
	Secondary window, Secondary Window
	Sections, Sections
	Setup, Setup
	Setup routine, Setup Routine
	Size checking, Size Checking
	Sprite, Sprite
	Status, Status
	Staus block, Status Block
	Sub-menu, Sub-Menu
	Sub-window, Sub-Window
	Timing out, Timing Out
	Top window, Top Window
	Unlockable window, Unlockable Window
	Unlocked window, Unlocked Window
	Unmanaged window, Unmanaged Window
	Unset, Unset
	Window definition, Window Definition
	Window Manager, Window Manager
	Working definition, Working Definition

	Config
		Header block, Configuration Information Specification
	Item attributes, Types Of Item
	Item description, Types Of Item
	Item post processing routine, Types Of Item
	Item pre-processing routine, Types Of Item
	Item types, Types Of Item
		Character, Types Of Item
	Code, Types Of Item
	Selection, Types Of Item
	String, Types Of Item
	Values - byte, word, string, Types Of Item

	Level 1, CONFIG Level 1
	Level 2, Configuration Information Specification
		Changed item types, Changed Item Types
	New item types, New Item Types
	Type all/nothing, New Item Types

	Pointer to item, Types Of Item
	Selection keystroke, Types Of Item

	CSIZE
		Definition, CSIZE

	cta%, Control Definition Array
	CTRL
		Definition, CTRL

	CTRLMAX, A_CTRL
		Definition, CTRLMAX

	Current item, Current Item, Window Status Area
	CVSCR
		Description, CVSCR

D
	Data Structures, Data Structures, Window Status Area, Window Status Area
	Data Structures - Pointer Interface, Pointer Interface, Area Mask, Area Mask
	Data Structures - Window definition, Window Definition, Working Definition, Working Definition
	Data Structures - Window Manager, Window Manager, Window Status Area, Window Status Area
	Digital precision, Compiled SuperBASIC
	DocBook, Preface
	Docbook, Preface
	DRAW
		Definition, DRAW

	DR_ADRW
		Definition, DR_ADRW

	DR_AWDF
		Definition, DR_AWDF

	DR_IDRW
		Definition, DR_IDRW

	DR_IWDF
		Definition, DR_IWDF

	DR_LDRW
		Definition, DR_LDRW

	DR_LWDF
		Definition, DR_LWDF

	DR_PPOS, Setup, Frequently Asked Questions
	DR_PRPOS
		Definition, DR_PPOS

	DR_PULD, Setup
	DR_PULLD
		Definition, DR_PULLD

	DR_UNST
		Definition, DR_UNST

	Dunbar, Norman, Preface

E
	EDSPR
		Sprite editing application, The Pointer Toolkit

	External pan and scroll, External Pan and Scroll

F
	FIXPF
		Description, FIXPF
	Name Table fixer, Bug "fixes"

G
	Graphics objects, Graphics objects
		Area mask, Area Mask
	Blob definition, Blob Definition
	Colour, Colour
	Form, Form
	Origin, Origin
	Pattern definition, Pattern Definition
	Patterns, canonical, Pattern
	Repeat attribute, Repeat
	Size, Size
	Sprite definition, Sprite Definition

	Gwilt, George, Preface, MK_AOLST, WM.INDEX Standard Sub-Window Index

H
	HELP
		Definition, HELP

	HOTKEY, HOT_STUFF
	HOT_KEYS, Preface
	HOT_STUFF
		Definition, HOT_STUFF

I
	iattr, Item Attributes Array
	IATTR, BORDER
		Definition, IATTR

	IBAR
		Definition, IBAR

	ILST
		Definition, ILST

	Index of keywords, Index of keywords
	INFO
		Definition, INFO

	INK
		Definition, INK

	Inkscape, Preface
	Internal pan and scroll, Internal Pan and Scroll
	IOP.FLIM, IOP.FLIM Find Window Limits, IOP.SVPW Save Part Window
		Definition, IOP.FLIM Find Window Limits

	IOP.LBLB, IOP.LBLB Write a Line of Blobs
		Definition, IOP.LBLB Write a Line of Blobs

	IOP.OUTL, Pointer Interface, IOP.FLIM Find Window Limits, IOP.OUTL Set Window Outline, Frequently Asked Questions
		Definition, IOP.OUTL Set Window Outline

	IOP.PICK
		Definition, IOP.PICK Pick Window

	IOP.PINF
		Definition, IOP.PINF Get Pointer Information

	IOP.RPTR, Pointer Interface
		Definition, IOP.RPTR Read Pointer

	IOP.RPXL
		Definition, IOP.RPXL Read Pixel Colour

	IOP.RSPW
		Definition, IOP.RSPW Restore Part Window

	IOP.SLNK
		Definition, IOP.SLNK Set Bytes in Linkage Block

	IOP.SPRY, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.SPRY Spray Pixels in Blob

	IOP.SPTR
		Definition, IOP.SPTR Set Pointer Position

	IOP.SVPW, IOP.RSPW Restore Part Window
		Definition, IOP.SVPW Save Part Window

	IOP.SWDEF, Frequently Asked Questions
		Definition, IOP.SWDF Set Sub-Window Definition List

	IOP.SWDF, Pointer Interface, IOP.RPTR Read Pointer
	IOP.WBLB, IOP.LBLB Write a Line of Blobs, IOP.SPRY Spray Pixels in Blob
		Definition, IOP.WBLB Write a Blob

	IOP.WRST, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WRST Window Area Restore

	IOP.WSAV, Pointer Interface, IOP.OUTL Set Window Outline
		Definition, IOP.WSAV Window Area Save

	IOP.WSPT
		Definition, IOP.WSPT Write a Sprite

	ITEM
		Definition, ITEM

	I_END, A_END
		Definition, I_END

	I_ITEM
		Definition, I_ITEM

	I_OLST
		Definition, I_OLST

	I_WINDW
		Definition, I_WINDW

	I_WLST
		Definition, I_WLST

J
	Jochen Merz Software (JMS), Preface
	JUSTIFY
		Definition, JUSTIFY

K
	Keystroke selection, Keystroke Selection
	Kilgus, Marcel, Preface

L
	LAYOUT, Structure, A_WLST
		Definition, LAYOUT

	LBLOB, WBLOB
		Definition, LBLOB

	LBYTES, WBLOB
	lflag%, Loose And Menu Item Flag Array
	Liberation Software, Compiled SuperBASIC
	LOOS
		Definition, LOOS

	Loose menu item action routine, Loose Menu Item Action Routine
	L_END
		Definition, L_END

	L_ILST
		Definition, L_ILST

	L_ITEM
		Definition, L_ITEM

M
	MENSIZ
		Definition, MENSIZ

	MenuConfig, CONFIG Level 1
		Description, MenuConfig

	Merz, Jochen, Preface
	MKPAT
		Definition, MKPAT

	MKSELK, Text Macros
		Definition, MKSELK

	MKSTR
		Definition, MKSTR

	MKTEXT, Text Macros
		Definition, MKTEXT

	MKTITL
		Definition, MKTITL

	MKTITS
		Definition, MKTITS

	MKXSTR
		Definition, MKXSTR

	MK_AOL, MK_RWL
	MK_AOLST
		Definition, MK_AOLST

	MK_APPW, MK_AWL
	MK_APW
		Definition, MK_APPW

	MK_ASL
		Definition, MK_ASL

	MK_AWL, MK_WDEF
		Definition, MK_AWL

	MK_CDEF
		Definition, MK_CDEF

	MK_IOL, MK_IWL
		Definition, MK_IOL

	MK_IWL, MK_WDEF
		Definition, MK_IWL

	MK_LIL, MK_IOL, MK_WDEF
		Definition, MK_LIL

	MK_RWL
		Definition, MK_RWL

	MK_WDEF, Setup, Drawing Routines
		Definition, MK_WDEF

	MODE, RMODE
	MS_HOT
		Definition, MS_HOT

	MS_SPD
		Definition, MK_SPD

O
	OBJEL
		Definition, OBJEL

	OLST
		Definition, OLST

	ORIGIN, POSN
		Definition, ORIGIN

	OUTLN, Managed Window, Outline, Size Checking, Unmanaged Window, SWDEF, Frequently Asked Questions
		Definition, OUTLN

	OUTLNN, Primary Window

P
	PAINT
		Image painting application, The Pointer Toolkit

	Pannable and scrollable sub-windows, Pannable and Scrollable Sub-Windows
	PATTERN
		Definition, PATTERN

	pdf2txt, Preface
	PICK, Pick, Unlockable Window
		Definition, PICK

	Pointer Environment, Preface, The Pointer Toolkit, Where to start, Channel definition block, Pointer Environment Changes
		Changes, Pointer Environment Changes

	Pointer Interface, The Pointer Toolkit, Pointer Interface, IOP.WRST Window Area Restore, IOP.WRST Window Area Restore, Channel definition block, Pointer Environment Changes
		Changes, Pointer Interface Changes

	Pointer Toolkit, The Pointer Toolkit, Compiled SuperBASIC
		Changes, Pointer Toolkit Changes

	POSN
		Definition, POSN

	PREST, PSAVE
		Definition, PREST

	Primary window, Channel definition block
	PSAVE, MKPAT
		Definition, PSAVE

	PTR_GEN
		Pointer handling code, Preface

	Publican (toolchain), Preface

Q
	QJump, The Pointer Toolkit
	QJump Limited, Preface
	ql-users (mailing list), Preface
	QPC emulator, Preface
	QPCPrint, Preface
	QPTR toolkit, SuperBASIC & the Pointer Environment
	Q_Liberator, Compiled SuperBASIC

R
	RD_PTR, Control Routine, Hit Routine, MK_LIL, MK_APPW, Loose And Menu Item Flag Array
		Definition, RD_PTR

	RECHP, PREST
	RLST
		Definition, RLST

	RMODE
		Definition, RMODE

	ROWEL
		Definition, ROWEL

	RPIXL, Pointer Interface routines
		Definition, RPIXL

	RPTR, Locked Window, RPTR
		Definition, RPTR

S
	SD.WDEF, Pointer Interface, IOP.RPTR Read Pointer, IOP.RPXL Read Pixel Colour, IOP.LBLB Write a Line of Blobs, IOP.OUTL Set Window Outline, WM.WDRAW Draw Window Contents
	Secondary window, Channel definition block
	SELKEY
		Definition, SELKEY

	SETR
		Definition, SETR

	SETWRK, Structure, WINDOW
		Definition, SETWRK

	SIZE
		Definition, SIZE

	SIZE_OPT, Structure, LAYOUT, WINDOW
		Definition, SIZE_OPT

	SLST
		Definition, SLST

	SOFFSET
		Definition, SOFFSET

	SourceForge, Preface
	SPARE
		Definition, SPARE

	SPCEL
		Definition, SPCEL

	SPHDR, SPLIN, WBLOB
		Definition, SPHDR

	SPLIN, SPHDR, WBLOB
		Definition, SPLIN

	SPRAY
		Definition, SPRAY

	SPRITE
		Definition, SPRITE

	SPRSP, MKPAT
	SPSET, SPLIN, WBLOB
		Definition, SPSET

	SPTR
		Definition, SPTR

	SRSP
		Definition, SRSP

	Standard menu action routine, Standard Menu Action Routine
	Status area
		Application menu items, Window Status Area
	Loose items, Window Status Area

	Status area, window, Window Status Area
	STKINC, Frequently Asked Questions
		Description, STKINC
	Stack adjusting utility for Liberated
 programs, Compiled SuperBASIC

	Sub-window indices, Sub-Window Indices
	SuperBASIC, The Pointer Toolkit, Where to start, Compiled SuperBASIC, SuperBASIC & the Pointer Environment
	Supercharge, Compiled SuperBASIC
	SWDEF, Frequently Asked Questions
		Definition, SWDEF

	S_END
		Definition, S_END

T
	Tebby, Tony, Preface
	TEXT
		Definition, TEXT

	Text87, Preface
	Troubleshooting
		Frequently asked questions, Frequently Asked Questions

	Turbo, Compiled SuperBASIC
	TYPE
		Definition, TYPE

U
	Utilities, Utilities
	Utility programs
		CVSCR, CVSCR
	FIXPF, FIXPF
	STKINC, STKINC

V
	Variables
		CLAYOUT, Rules and Reserved Symbols, APPN, A_RLST, A_SLST, A_WDEF, A_WINDW, A_WLST, ILST, INFO, I_ITEM, I_OLST, I_WLST, LOOS, L_ILST, L_ITEM, OBJEL, OLST, ROWEL, RLST, SIZE_OPT, SLST
	CURRA, Rules and Reserved Symbols, A_OBJE, A_WDEF, CTRLMAX, ITEM, L_ILST
	CURRW, Rules and Reserved Symbols, SIZE_OPT, XLAYOUT
	MAXITEM, Rules and Reserved Symbols, ITEM, L_END, L_ILST
	MKT.PRM, Text Macros
	MKT.PRMX, Text Macros
	WSIZES, Rules and Reserved Symbols, SIZE_OPT

W
	WATTR
		Definition, WATTR

	wattr%, Window Attributes Array
	WBLOB, LBLOB, SPHDR, SPRAY, WSPRT
		Definition, WBLOB

	wdef%, Window Size/Position Definition Array
	WINDOW, Managed Window, Outline, Size Checking, Structure, XLAYOUT, Frequently Asked Questions
		Definition, WINDOW

	Window definition
		Application menu index list, Menu Object / Index List Entry
	Application menu object list, Menu Object Lists, Menu Object / Index List Entry
	Application menu row list, Menu Row List
	Application menu spacing list, Menu Object Spacing List
	Application window, Application Sub-Window Definition
	Application window list, Application Sub-Window List
	Application window menus, Menu Sub-Windows Only
	Fixed part, Fixed Part of Window Definition
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List
	Menu item attributes, Menu Item Attributes
	Pan/scroll windows, Pannable and Scrollable Sub-Windows Only
	Repeated part, Repeated Part of Window Definition
	Structure, Structure
	Window attributes, Window Attributes

	Window Manager, The Pointer Toolkit, Compiled SuperBASIC, Window Manager, Index of TRAPs and vectors, Index of TRAPs and vectors, Pointer Environment Changes
		Changes, Window manager Changes

	Window manager access routines, Window Manager Access routines
	Window manager read pointer, Window Manager Read Pointer
	Window manager utility routines, Utility routines
	Window move and change size, Window Move and Change Size
	Window working definition, Working Definition
		Application menu item attributes, Menu Item Attributes
	Application menu object lists, Menu Object Lists
	Application menu windows, Menu Sub-Windows Only
	Application window, Application sub-window definition
	Application window list, Application Sub-Window List
	Header block, Header Block
	Information object list, Information Object List
	Information windows, Information Sub-Window
	Loose items list, Loose Menu Items List, Information Sub-Window
	Menu index list, Menu Object / Index List Entry
	Menu object list, Menu Object / Index List Entry
	Menu object spacing list, Menu Object Spacing List
	Menu row list, Menu Row List
	Organisation, Working Definition Organisation
	Pan/scroll application windows, Pan & Scroll Sub-Windows Only
	Window attributes, Window Attributes
	Window definition block, Window Definition Block

	WM,RNAME, WM.RNAME - Read Name.
	WM.CHWIN, Window Move and Change Size
		Definition, WM.CHWIN - Change Window Event Handling

	WM.DRBDR, WM.DRBDR - Draw border around current item
		Definition, WM.DRBDR - Draw border around current item

	WM.ENAME, WM.RNAME - Read Name.
		Definition, WM.ENAME - Edit Name

	WM.ERSTR
		Definition, WM.ERSTR - Get String Corresponding To Error
 Code

	WM.FSIZE, Setup routines
		Definition, WM.FSIZE Find Size of Layout

	WM.IDRAW, Utility routines
		Definition, WM.IDRAW - Draw information sub-windows

	WM.INDEX, Draw Routine, Part Drawing routines, WM.UPBAR - Update pan/scroll bars
		Definition, WM.INDEX Standard Sub-Window Index

	WM.LDRAW, Part Drawing routines, Utility routines
		Definition, WM.LDRAW - Loose Menu Item Drawing

	WM.MDRAW, Draw Routine, Setup routines, Part Drawing routines, WM.MDRAW Standard Menu Drawing, Internal Pan and Scroll
		Definition, WM.MDRAW Standard Menu Drawing

	WM.MHIT, Hit Routine, Part Drawing routines, Current Item, Keystroke Selection, WM.RPTR - Read Pointer, Standard Menu Action Routine, Application Window Control Routine, Pannable and Scrollable Sub-Windows, Internal Pan and Scroll
		Definition, WM.MHIT - Standard Application Sub-Window Hit
 Routine

	WM.MSECT
		Definition, WM.MSECT - Find menu section

	WM.PANSC, Control Routine
		Definition, WM.PANSC - Pan/Scroll Standard Menu

	WM.PRPOS, Setup routines, Window Manager Set Window Routines, Frequently Asked Questions
		Definition, WM.PRPOS Primary Window Positioning

	WM.PULLD, Setup routines, Window Manager Set Window Routines
		Definition, WM.PULLD Pull Down Window Open

	WM.RNAME
		Definition, WM.RNAME - Read Name.

	WM.RPTR, Setup routines, Part Drawing routines, Window Manager Read Pointer, Current Item, Keystroke Selection, Application Sub-Window Hit Routine, Standard Menu Action Routine, Application Window Control Routine, Loose Menu Item Action Routine, Pannable and Scrollable Sub-Windows, Window Move and Change Size
		Definition, WM.RPTR - Read Pointer

	WM.RPTRT, Application Sub-Window Hit Routine
	WM.SETUP, Setup, Setup routines, WM.FSIZE Find Size of Layout, WM.SETUP Setup a Managed Window
		Definition, WM.SETUP Setup a Managed Window

	WM.SMENU, Setup Routine, Setup routines
		Definition, WM.SMENU Setup Standard Sub-window Menu

	WM.STIOB
		Definition, WM.STIOB - Set Information Object

	WM.STLOB
		Definition, WM.STLOB - Set Loose Item Object

	WM.SWAPP
		Definition, WM.SWAPP - Set window to application
 sub-window

	WM.SWDEF, Part Drawing routines
		Definition, WM.SWDEF - Set Sub-Window Definition

	WM.SWINF
		Definition, WM.SWINF - Set window to info window

	WM.SWLIT
		Definition, WM.SWLIT - Set window to loose item

	WM.SWSEC
		Definition, WM.SWSEC - Set window to application sub-window
 section

	WM.UNSET, Unset, Window Manager Set Window Routines
		Definition, WM.UNSET Window Unset

	WM.UPBAR, WM.UPBAR - Update pan/scroll bars
		Definition, WM.UPBAR - Update pan/scroll bars

	WM.WDRAW, Setup routines, Drawing routines, Part Drawing routines
		Definition, WM.WDRAW Draw Window Contents

	WM.WRSET, Window Manager Set Window Routines
		Definition, WM.WRSET Window Reset

	WMAN
		Window Manager, Preface

	WM_SETUP, Working Definition Organisation, Structure, Frequently Asked Questions
	WM_SMENU, Working Definition Organisation
	WREST
		Definition, WREST

	WSPRT, SPHDR
		Definition, WSPRT

X
	XLAYOUT, Structure, LAYOUT
		Definition, XLAYOUT

Revision History

	Revision History
	Revision 1.0	1988	Tony Tebby
	
 	Initial version. (Dates assumed from copyright
 information. ND)

	Revision 2.0	Up to 2010	Jochen Merz, Marcel Kilgus
	
 	Printed Version(s) and printed updates.

	Revision 3.0	2009 until August 2011	Norman Dunbar
	
 	Docbook version created from Marcel's PDF version of
 Jochen's printed version. Minor corrections to text. No updates
 yet added for more modern versions of the PE. Those additions will
 follow in a future release.

	Revision 3.1	September 2011	Norman Dunbar
	
 	Docbook version updated quite drastically.
	Assembly routines have their register parameters in table
 format, tables should no longer split between pages - unless they
 are particularly long tables.
	A number of cross references have been completed with
 minor changes to the original text to make then read better.
 Publican puts in the chapter or section number so that has to
 "scan" when reading the text.

	Revision 3.2	January 2012	Norman Dunbar
	
 	A few minor updates - details of WMAN indexes not working
 added. Thanks George.
	Marcel's updates merged into the main manual.
	Spelling fixed in a number of places.
	Started indexing just about everything!

OEBPS/images/qram.png
o
1
H
H
H
H
H
H
H
H
H
H
c
o
H
£

acp
artictes
bazic
boat

cte

e
eman
aigitalc
diza
Sditar

e

Farner
Georgesui Lt

aas
384

76

10

