
SUPERCHARGE!

SUPERBASIC COMPILER

A
AMDIGITAL PRECISION
f]

1985





SUPERCHARGE

Program and documentation © 1985 Simon N. Goodwin

Published by:
Freddy Vachha BSc

Digital Precisi eon Ltd
Glossary Copyright Freddy Vachha 1985

SINCLAIR, Q.L. Super BASIC

Are Trademarks of Sinclair Research Ltd.





SUPERCHARGE

CONTENTS

Chapter

10

11

A Rapid Introduction

A Leisurely Introduction

Using SUPERCHARGE

Multitasking

Extensions to SuperBASIC

SUPERCHARGE and SuperBASIC Compatibility

What Compilers can and can’t do

Example Programs

End of File

Glossary

SUPERCHARGING Advanced Mathematical Functions

Index

SUPERCHARGE USER’S MANUAL

89

92





A RAPID INTRODUCTION CHAPTER 1

PLEASE READ THIS FIRST!

We understand that you've just bought a fascinating program

and you're eager to try it out. You probably don't want to

read 40,000 words of wisdom before you can use SUPERCHARGE.

If you read the short summary on this and the next three
pages you will be able to get stuck in almost straight
away, without false starts or an irritating delay. If you
get stuck, come back to the manual and read Chapters 2 and

3 for a more leisurely introduction. SUPERCHARGEis a
sophisticated and versatile product - you will find the
rest of this manual very useful when you want to squeeze
the best possible performance out of your QL.

(ALMOST) INSTANT MACHINE CODE

(1) Reset the QL with the SUPERCHARGEcartridge in
Microdrive L. The 'BOOT’ program loads the BASIC extensions
used by SUPERCHARGE. Leave the cartridge in the drive.

(2) LOAD a short BASIC program (a few hundred lines). The
demonstration program we supply is called MDV1_DEMO_BAS.

(3) RUN the SuperBASIC to satisfy yourself that it works
normally. Type CLEAR to release as much memory as possible.

(4) Start SUPERCHARGE with this command:

MERGE mdv1l_supercharge

(If you see an ‘out of memory’ error when this command
is entered, you should try a smaller program, or refer
to the detailed advice in Chapter 3).

SUPERCHARGEloads and displays a pattern composed of three
vertical lines and one horizontal. This pattern is used to
align 'LENSLOK' - the black plastic device with a trans-
parent lens at its centre, used to protect SUPERCHARGE.

Adjust the width of the pattern on the screen to match that
of the lens-holder. Press the left-arrow key to make the
outer lines move apart, and press the right-arrow key to
move them closer together. Take the plastic LENSLOK device
and hold it lengthways across the screen, without folding
it. It should be about 100mm long. Adjust the outer lines
so that they line up with the outer edges of the LENSLOK.
Tap the SPACE key when the lines are correctly positioned.

SUPERCHARGE USER'S MANUAL Page |



A RAPID INTRODUCTION CHAPTER |

A pattern of oblong blocks now appears on the screen. Fold
the lens holder into a 'U’ shape and press its legs firmly
against the display. The holder is marked with various

helpful pieces of information, such as 'TOP', 'LEFT’ and
and 'THIS SIDE OUT’ (i.e. towards the viewer).

Close one eye and align the centre line of the lens with
the vertical line in the middle of the screen. Look through
the transparent lens set within the holder. you should be
able to see the letters 'OK', as shown in the picture
below. Press the SPACE key when you can read the letters.

 

Another pattern of blocks then appears. When viewed through
the lens, this pattern corresponds to two randomly-chosen
characters. You have ten seconds in which to type the
characters. SUPERCHARGE starts when you have identified
both characters correctly. If you fail to type both
characters within ten seconds another pair will appear. You
are allowed three tries before it becomes necessary to
re-load the program.

(5) If all is weil SUPERCHARGE asks you for the name which
you want it to give to the compiled program. Try another
name if the compiler rejects your entry with an error

report. Remember to include the device name (e.g. MDV1).

(6) You are asked whether or not you want a listing of the
program as it is compiled. Type Y for Yes, or N_ for No.

’
(7) Say where you want to send the ‘report’ file produced
by the compiler. This report contains any error messages or
warnings which may be generated, plus the listing (if any).
If you press ENTER, the report is displayed on the screen.

SUPERCHARGE USER'S MANUAL Page 2



A RAPID INTRODUCTION CHAPTER 1

SUPERCHARGE then analyses your SuperBASIC program, checking
for errors and translating it into intermediate code. Large
coloured areas will appear on the screen as the compiler
works. This does not indicate a fault - it just shows that
SUPERCHARGEis making optimum use of the available memory.

After a short while the total number of errors is reported.
If there were any errors the compiler will stop. The error
messages are listed and explained in Chapter 3. If no
errors were found, the code-generator is automatically
loaded, to produce a task file with the name you supplied.

SUPERCHARGEclears the screen when it has finished.

RUNNING A COMPILED PROGRAM
When SUPERCHARGEhasfinished you are back where you were
before you loaded it, except that a compiled task has been
saved (if there were no errors). If you specified the name

FLP1_GAME, for example, you can run the task by typing:

EXEC_W FLP1_GAME

The compiled program will load and run, using copies of the
windows defined in SuperBASIC for channels 0 and 1.

You can run several programs at once if you use the EXEC
command rather than EXEC_W. When a task is loaded with EXEC
it runs independently of SuperBASIC - you can type other

commands (perhaps including further EXEC commands) while it
is executed.

ALLOCATING EXTRA MEMORY
When a compiled program is loaded, 2K of memory is normally
reserved for the ‘data’ it will generate. This space is
“used to hold variable values, return-points, and channel
details. If a compiled program stops with an ‘out of
memory’ report you will need to increase the amount of data
space allocated to the task. You can do this with a program
called DATASPACE. Load it with this command:

EXEC_W MDVI_DATASPACE_TASK

Enter the name of the task you want to modify. The program
size and data allocation will be shown. Type the new amount
of data space, in kilobytes. Press ENTER on its own to stop
the task, There are full instructions in Chapter 4.

SUPERCHARGE USER'S MANUAL Page 3



A RAPID INTRODUCTION CHAPTER 1

SUPERCHARGE vs SUPERBASIC
This list is a very concise summary of the differences
between interpreted and compiled SuperBASIC. You can find
more detailed information, and examples, in Chapter 6. The
main differences are that compiled programs are usually
much faster, and run as independent tasks.

SUPERCHARGEis closely compatible with SuperBASIC, but
there are some discrepancies, since compiled programs are
necessarily executed quite differently from normal BASIC.

(1) Editing and debugging commands such as LIST, MERGE and
CONTINUE are not supported by SUPERCHARGE,since there is
no ‘program text' once a program has been compiled.

(2) Floating-point values are computed and displayed to
nine decimal places of accuracy; integer (whole number)

arithmetic is performed extremely fast. SuperBASIC only
displays seven places and handles integers very slowly.

(3) DIM statements should be used to declare strings of
more than 256 characters. Array subscripts must be integers
up to 32767. Only strings and string arrays may besliced.

(4) SUPERCHARGEhas to analyse ALL of the program before it
can generate code, whereas the interpreter only analyses
lines as they are executed. Consequently the compiler is a
little more rigorous about the syntax of programs:

(4a) You may not use the same name for more than one
purpose in a compiled program (so arrays, procedures
and functions may not have the same names). Doilar and
per cent signs must be used to distinguish string and
integer names, and you may use names which differ only
in their last character, e.g. FRED% and FREDS.

(4b) Loops, tests and definitions in compiled programs
must have matching ENDs. Of course, you may omit these
when you use ‘short’ (single-line) loops and tests, and
loops may contain as many NEXTs and EXITs as you wish.

(5) Only functions return values. Globa! or less-local
variables must be used to pass values out of procedures.

(6) Line numbers and DATA values must be fixed. Calculated
values, such as GOTO A*20, are not allowed. Such code

should be replaced with ON..GOTO, SELECT or assignments.

SUPERCHARGE USER'S MANUAL Page 4










































































































































































































